Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Cation Vacancies in Ti‐Deficient TiO2 Nanosheets Enable Highly Stable Trapping of Pt Single Atoms for Persistent Photocatalytic Hydrogen Evolution

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • نبذة مختصرة :
      The stabilization of single-atom catalysts on semiconductor substrates is pivotal for advancing photocatalysis. TiO2, a widely employed photocatalyst, typically stabilizes single atoms at oxygen vacancies—sites that are accessible but prone to agglomeration under illumination. Here, we demonstrate that cation vacancies in Ti-deficient TiO2 nanosheets provide highly stable anchoring sites for Pt single atoms, enabling persistent photocatalytic hydrogen evolution. Ultrathin TiO2 nanosheets with intrinsic Ti4+ vacancies are synthesized via lepidocrocite-type titanate delamination and Pt single atoms are selectively trapped within these vacancies through a simple immersion process. The resulting Pt-decorated nanosheets exhibit superior photocatalytic hydrogen evolution performance, outperforming both Pt nanoparticle-loaded nanosheets and benchmarked Pt single-atom catalysts on P25. Crucially, Pt atoms anchored at Ti4+ vacancies display remarkable resistance to light-induced agglomeration, a key limitation of conventional single-atom photocatalysts. Density functional theory calculations reveal that Pt incorporation into Ti4+ vacancies is highly thermodynamically favorable and optimizes hydrogen adsorption energetics for enhanced catalytic activity. This work highlights the critical role of cation defect engineering in stabilizing single-atom co-catalysts and advancing the efficiency and durability of photocatalytic hydrogen evolution.
    • File Description:
      electronic