Item request has been placed!
×
Item request cannot be made.
×

Processing Request
Deep learning techniques for breast mass malignancy classification on digital mammography
Item request has been placed!
×
Item request cannot be made.
×

Processing Request
- معلومة اضافية
- Publisher Information:
2025
- نبذة مختصرة :
Introduction: Breast cancer is one of the most common type of cancer with a high mortality rate. Mammography is widely used to identify breast cancer. Computer Aided Diagnosis systems are used for automatic detection of breast lesions. Methods: We propose and evaluate a deep learning model, called VGG16-C300, for breast mass malignancy classification. CBIS-DDSM dataset was used for training and evaluation. Image contrast enhancement methods like CLAHE and Mean Blur where previously applied to regions of interests. Results: The trained model achieved and area under the curve of 0.80, after 10 iterations of a 5-fold Cross-Validation. Conclusions: VGG16-C300 could be used as a component in a computer-aided diagnosis system for breast cancer detection
- الموضوع:
- Availability:
Open access content. Open access content
LICENCIA DE USO: Los documentos a texto completo incluidos en Dialnet son de acceso libre y propiedad de sus autores y/o editores. Por tanto, cualquier acto de reproducción, distribución, comunicación pública y/o transformación total o parcial requiere el consentimiento expreso y escrito de aquéllos. Cualquier enlace al texto completo de estos documentos deberá hacerse a través de la URL oficial de éstos en Dialnet. Más información: https://dialnet.unirioja.es/info/derechosOAI | INTELLECTUAL PROPERTY RIGHTS STATEMENT: Full text documents hosted by Dialnet are protected by copyright and/or related rights. This digital object is accessible without charge, but its use is subject to the licensing conditions set by its authors or editors. Unless expressly stated otherwise in the licensing conditions, you are free to linking, browsing, printing and making a copy for your own personal purposes. All other acts of reproduction and communication to the public are subject to the licensing conditions expressed by editors and authors and require consent from them. Any link to this document should be made using its official URL in Dialnet. More info: https://dialnet.unirioja.es/info/derechosOAI
- Note:
application/pdf
Salud, Ciencia y Tecnología - Serie de Conferencias, ISSN 2953-4860, Nº. 4, 2025 (Ejemplar dedicado a: Salud, Ciencia y Tecnología - Serie de Conferencias)
English
- Other Numbers:
S9M oai:dialnet.unirioja.es:ART0001727277
https://dialnet.unirioja.es/servlet/oaiart?codigo=9881403
(Revista) ISSN 2953-4860
1515684612
- Contributing Source:
UNIV COMPLUTENSE DE MADRID
From OAIster®, provided by the OCLC Cooperative.
- الرقم المعرف:
edsoai.on1515684612
HoldingsOnline
No Comments.