نبذة مختصرة : Abstrak. Penjadwalan sumberdaya merupakan salah satu aspek penting dalam pengendalian dan penjadwalan proyek. Metoda-metoda penjadwalan yang dikembangkan saat ini, seperti pendekatan coba-coba, algoritma heuristic, atau algoritma momen minimum, telah mampu menjawab problema penjadwalan sehingga fluktuasi penggunaan sumberdaya dapat diminimalkan. Selain penjadwalan sumberdaya dan problem perimbangan biaya-waktu, optimisasi dalam pencarian solusi terhadap dua fungsi objektif juga sulit dipecahkan melalui suatu program matematis sederhana. Tulisan ini membahas upaya menerapkan pendekatan algoritma genetik guna mencari solusi optimal dari problema penjadwalan sumberdaya dengan menggunakan pendekatan perimbangan biaya-waktu. Upaya mencari solusi optimal dilakukan dengan pendekatan algoritma momen minimum melalui penghitungan iteratif faktor peningkatan. Pada penelitian ini ditunjukan bahwa solusi mendekati optimal terhadap deviasi sumberdaya dan biaya total minimal dapat dicapai secara bersamaan. Abstract. Resource scheduling is one of the most important aspects of project control and scheduling. Existing methods such as Trial And Error Approach, Heuristics Algorithms, and Minimum Moment Algorithms, have the ability to solve resource scheduling problems, by means of minimizing fluctuations of resource utilization. In addition to resource scheduling and time-cost trade-off problems, the optimization for searching the optimal solution of two objective functions can hardly be solved by using simple mathematical programming. This paper presents an attempt to implement Genetic Algorithms approach in pursuit of finding optimal solution for resource scheduling problem by also considering the time-cost trade-off problems. Effort to find the optimal solution has been developed using minimum moment algorithm approach through the iterative calculation of improvement factor. The result shows that a near optimal solution for both resource schedule deviation and minimum cost can be achieved simultaneously.
No Comments.