Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Stability properties of Radon measure-valued solutions for a class of nonlinear parabolic equations under Neumann boundary conditions

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      AIMS Press, 2021.
    • الموضوع:
      2021
    • Collection:
      LCC:Mathematics
    • نبذة مختصرة :
      In this paper, we address the existence, uniqueness, decay estimates, and the large-time behavior of the Radon measure-valued solutions for a class of nonlinear strongly degenerate parabolic equations involving a source term under Neumann boundary conditions with bounded Radon measure as initial data. $ \begin{equation*} \begin{cases} u_{t} = \Delta\psi(u)+h(t)f(x, t) \ \ &\text{in} \ \ \Omega\times(0, T), \\ \frac{\partial\psi(u)}{\partial\eta} = g(u) \ \ &\text{on} \ \ \partial\Omega\times(0, T), \\ u(x, 0) = u_{0}(x) \ \ &\text{in} \ \ \Omega, \end{cases} \end{equation*} $ where $ T > 0 $, $ \Omega\subset \mathbb{R}^{N}(N\geq2) $ is an open bounded domain with smooth boundary $ \partial\Omega $, $ \eta $ is an outward normal vector on $ \partial\Omega $. The initial value data $ u_{0} $ is a nonnegative bounded Radon measure on $ \Omega $, the function $ f $ is a solution of the linear inhomogeneous heat equation under Neumann boundary conditions with measure data, and the functions $ \psi $, $ g $ and $ h $ satisfy the suitable assumptions.
    • File Description:
      electronic resource
    • ISSN:
      2473-6988
    • Relation:
      https://doaj.org/toc/2473-6988
    • الرقم المعرف:
      10.3934/math.2021707?viewType=HTML
    • الرقم المعرف:
      10.3934/math.2021707
    • الرقم المعرف:
      edsdoj.42a5eb14fddb45d38116d3b216616d15