Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Rational Retrieval Acts: Leveraging Pragmatic Reasoning to Improve Sparse Retrieval

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Université Paris-Saclay; International Laboratory on Learning Systems (ILLS); McGill University = Université McGill Montréal, Canada -Ecole de Technologie Supérieure Montréal (ETS)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS); Institut des Systèmes Intelligents et de Robotique (ISIR); Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS); Air Liquide; CentraleSupélec; Agence ministérielle pour l'IA de défense France (AMIAD); Ministère des armées – Ministère de la défense France (1946-.); Machine Learning and Information Access (MLIA); Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS); Centre National de la Recherche Scientifique (CNRS); ACM; ANR-23-IAS1-0003,GUIDANCE,Assistants Digitaux pour l'Accès Généralisé à l'Information(2023)
    • بيانات النشر:
      CCSD
    • الموضوع:
      2025
    • الموضوع:
    • الموضوع:
      Padova, France
    • نبذة مختصرة :
      6 pages - 2 figures - conference: accepted at SIGIR 2025 ; International audience ; Current sparse neural information retrieval (IR) methods, and to a lesser extent more traditional models such as BM25, do not take into account the document collection and the complex interplay between different term weights when representing a single document. In this paper, we show how the Rational Speech Acts (RSA), a linguistics framework used to minimize the number of features to be communicated when identifying an object in a set, can be adapted to the IR case -and in particular to the high number of potential features (here, tokens). RSA dynamically modulates tokendocument interactions by considering the influence of other documents in the dataset, better contrasting document representations. Experiments show that incorporating RSA consistently improves multiple sparse retrieval models and achieves state-of-the-art performance on out-of-domain datasets from the BEIR benchmark.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/2505.03676; ARXIV: 2505.03676
    • الرقم المعرف:
      10.1145/3726302.3730239
    • الدخول الالكتروني :
      https://hal.science/hal-05074220
      https://hal.science/hal-05074220v1/document
      https://hal.science/hal-05074220v1/file/RRA_SIGIR_Paper__Copy_.pdf
      https://doi.org/10.1145/3726302.3730239
    • Rights:
      http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.FDB2D3DE