Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Annotation-free deep-learning framework for microcalcifications detection on mammograms

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Hera-MI (Hera-MI); Laboratoire des Sciences du Numérique de Nantes (LS2N); Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique); Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-NANTES UNIVERSITÉ - École Centrale de Nantes (Nantes Univ - ECN); Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST); Nantes Université - pôle Sciences et technologie; Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie; Nantes Université (Nantes Univ); This research is supported by the CIFRE program granted bythe French ANRT organism under contract no. 2022/155.
    • بيانات النشر:
      CCSD
      SPIE
    • الموضوع:
      2024
    • Collection:
      Université de Nantes: HAL-UNIV-NANTES
    • الموضوع:
    • نبذة مختصرة :
      International audience ; Breast cancer detection at an early stage significantly increases the chances of recovery for patients. Mammography(MG) is one of the most popular non-invasive and high-resolution imaging allowing radiologists to depictearly signs of the disease. Microcalcifications (MCs) often occupy less than 1mm in size and can represent ahigh risk of suspicion depending on the spatial distribution, morphology, and their evolution over time. Theirdetection is challenging both the clinicians and computer-aided detection tools. In this work, we propose anovel annotation-free framework designed specifically for the MCs detection and trained in a self-supervisedmanner thanks to the generation of synthetic MCs. Inspired by the UNet3+ architecture, we reduced its numberof parameters to make it applicable in practice and added multi-scale features to enrich fine-grained detailswith more global context information. Both multi-channel segmentation and multi-class classification tasks areimplemented in a multi-scale output approach to catch MC of various sizes. We perform a comparison withseveral state-of-the-art methods, including different flavors of ResNet-22, ConvNeXt, and UNet3+. An analysisof classification and segmentation performances has been done, using the Gradient-weighted Class ActivationMapping method to make classifiers visually explainable. In this study, we used two public datasets, INBreastand Breast MicroCalcifications Dataset for validation and test purposes. We achieved an AUC score of 0.93 inthe characterization of malignant MCs while having a semantic segmentation precision of 0.70. To the best ofour knowledge, we are the first study claiming segmentation performances on the BMCD dataset.
    • الرقم المعرف:
      10.1117/12.3008304
    • الدخول الالكتروني :
      https://hal.science/hal-04636407
      https://hal.science/hal-04636407v1/document
      https://hal.science/hal-04636407v1/file/main.pdf
      https://doi.org/10.1117/12.3008304
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.FD4DF3E1