Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Numerical investigation of the maximum thermoelectric efficiency

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • المؤلفون: Limelette, Patrice
  • المصدر:
    ISSN: 2158-3226 ; AIP Advances ; https://univ-tours.hal.science/hal-03192476 ; AIP Advances, 2021, 11, ⟨10.1063/5.0041224⟩.
  • الموضوع:
  • نوع التسجيلة:
    article in journal/newspaper
  • اللغة:
    English
  • معلومة اضافية
    • Contributors:
      GREMAN (matériaux, microélectronique, acoustique et nanotechnologies) (GREMAN - UMR 7347); Université de Tours (UT)-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL); Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS); ANR-17-CE05-0012,Anisotherm,Matériaux polymère thermoélectriques anisotropes(2017)
    • بيانات النشر:
      HAL CCSD
      American Institute of Physics- AIP Publishing LLC
    • الموضوع:
      2021
    • Collection:
      Université de Poitiers: Publications de nos chercheurs.ses (HAL)
    • نبذة مختصرة :
      International audience ; The maximum thermoelectric efficiency that is given by the so-called dimensionless figure of merit ZT is investigated here numerically for various energy dependence. By involving the electrical conductivity σ, the thermopower α, and the thermal conductivity κ such that ZT = α 2 × σ × T/κ, the figure of merit is computed in the frame of a semiclassical approach that implies Fermi integrals. This formalism allows us to take into account the full energy dependence in the transport integrals through a previously introduced exponent s that combines the energy dependence of the quasiparticles' velocity, the density of states, and the relaxation time. While it has been shown that an unconventional exponent s = 4 was relevant in the context of the conducting polymers, the question of the maximum of ZT is addressed by varying s from 1 up to 4 through a materials quality factor analysis. In particular, it is found that the exponent s = 4 allows for an extended range of high figure of merit toward the slightly degenerate regime. Useful analytical asymptotic relations are given, and a generalization of the Chasmar and Stratton formula of ZT is also provided.
    • Relation:
      hal-03192476; https://univ-tours.hal.science/hal-03192476; https://univ-tours.hal.science/hal-03192476/document; https://univ-tours.hal.science/hal-03192476/file/limelette-2021-AIP-Advances-11-035135.pdf
    • الرقم المعرف:
      10.1063/5.0041224
    • الدخول الالكتروني :
      https://univ-tours.hal.science/hal-03192476
      https://univ-tours.hal.science/hal-03192476/document
      https://univ-tours.hal.science/hal-03192476/file/limelette-2021-AIP-Advances-11-035135.pdf
      https://doi.org/10.1063/5.0041224
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.E80B8E4