Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Improving Consistency Models with Generator-Augmented Flows

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Criteo AI Lab; Criteo Paris; AI, Information and Reasoning Laboratory (AI/R); Korea Institute of Science and Technology (KIST); AI and Robot Department, University of Science and Technology; Laboratoire d'Informatique, du Traitement de l'Information et des Systèmes (LITIS); Université Le Havre Normandie (ULH); Normandie Université (NU)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN); Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie); Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)
    • بيانات النشر:
      CCSD
    • الموضوع:
      2025
    • Collection:
      Normandie Université: HAL
    • الموضوع:
    • الموضوع:
      Vancouver, Canada
    • نبذة مختصرة :
      International audience ; Consistency models imitate the multi-step sampling of score-based diffusion in a single forward pass of a neural network. They can be learned in two ways: consistency distillation and consistency training. The former relies on the true velocity field of the corresponding differential equation, approximated by a pre-trained neural network. In contrast, the latter uses a single-sample Monte Carlo estimate of this velocity field. The related estimation error induces a discrepancy between consistency distillation and training that, we show, still holds in the continuous-time limit. To alleviate this issue, we propose a novel flow that transports noisy data towards their corresponding outputs derived from a consistency model. We prove that this flow reduces the previously identified discrepancy and the noise-data transport cost. Consequently, our method not only accelerates consistency training convergence but also enhances its overall performance. The code is available at: \href{https://github.com/thibautissenhuth/consistency_GC}{ github.com/thibautissenhuth/consistency\_GC}.
    • الدخول الالكتروني :
      https://hal.science/hal-04611719
      https://hal.science/hal-04611719v4/document
      https://hal.science/hal-04611719v4/file/Generator_induced_consistency%20%2818%29.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.E5D51D4E