Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Preventing tumor progression to the bone by induced tumor-suppressing MSCs

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Biomedical Engineering, School of Engineering and Technology
    • بيانات النشر:
      Ivyspring International
    • الموضوع:
      2021
    • Collection:
      Indiana University - Purdue University Indianapolis: IUPUI Scholar Works
    • نبذة مختصرة :
      Background: Advanced breast cancer metastasizes to many organs including bone, but few effective treatments are available. Here we report that induced tumor-suppressing (iTS) MSCs protected bone from metastases while un-induced MSCs did not. Methods: iTS MSCs were generated by overexpressing Lrp5, β-catenin, Snail, or Akt. Their tumor-suppressing capability was tested using a mouse model of mammary tumors and bone metastasis, human breast cancer tissues and cancer cell lines. Results: In a mouse model, the induced MSC-derived conditioned medium (MSC CM) reduced mammary tumors and suppressed tumor-induced osteolysis. Tumor-promoting genes such as CXCL2 and LIF, as well as PDL1, a blocker of T-cell-based immune responses were downregulated. Proteomics analysis revealed that heat shock protein 90 (Hsp90ab1), calreticulin (Calr) and peptidylprolyl isomerase B (Ppib), which are highly expressed intracellular proteins in many cancers, were enriched in MSC CM as atypical tumor suppressors. Thus, overexpressing selected genes that were otherwise tumorigenic rendered MSCs the tumor-suppressing capability through the atypical suppressors, as well as p53 and Trail. Notably, the inhibitory effect of Lrp5- and Akt-overexpressing MSC CMs, Hsp90ab1 and Calr presented selective inhibition to tumor cells than non-tumor cells. The development of bone-resorbing osteoclasts was also suppressed by MSC CMs. Conclusion: Collectively, the results showed an anti-tumor effect of iTS MSCs and suggested novel therapeutic approaches to suppress the progression of tumors into the bone.
    • File Description:
      application/pdf
    • Relation:
      Theranostics; https://hdl.handle.net/1805/29687
    • الدخول الالكتروني :
      https://hdl.handle.net/1805/29687
    • Rights:
      Attribution 4.0 International ; http://creativecommons.org/licenses/by/4.0/
    • الرقم المعرف:
      edsbas.DF4C917A