نبذة مختصرة : The response of large temporary working platforms for cross-sea bridges under the action of strong wind and waves with large tidal ranges is one of the key issues in offshore engineering. Based on a grand offshore bridge project in Fujian Province of China, on-site monitoring tests were carried out on a temporary working platform. A high-precision and fully automatic monitoring system was adopted to conduct the all-weather and high-frequency monitoring on vibrations, responses, and sea conditions of the platform, enabling us to grasp its structural mechanical characteristic and ensuring the platform safety. The results show that, under the severe sea conditions of typhoons, the stress of the platform structure increases significantly with the increase in the tidal range and reaches its maximum value at the high tide level. The inclination angle changes violently at the high tide level, while the amplitude of inclination angle change is relatively small at the low tide level. The effective value of the platform displacement under the severe sea conditions of typhoon meteorology is much larger than that under normal sea conditions. Compared with the low tide level, the acceleration of the offshore temporary work platform changes more drastically at the high tide level under severe sea conditions. Under severe sea conditions, the tidal level has a significant impact on the frequency corresponding to the peak value of the acceleration power spectrum of the offshore temporary platform.
No Comments.