Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Roof´s surface properties and its impact over indoor thermal performance. Descriptive analysis in a retail building located in three Colombian cities ; Impacto de las propiedades superficiales de una cubierta sobre el desempeño térmico interior. Análisis descriptivo sobre un local comercial de gran superficie en tres ciudades colombianas

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Universidad Católica de Colombia
    • الموضوع:
      2024
    • Collection:
      Portal de revistas electrónicas de la Universidad Católica de Colombia
    • نبذة مختصرة :
      Knowledge of surface properties is very important to define passive cooling strategies and thermal performance in indoor environments. In order to identify the impact that these properties have on these aspects, methodologies were investigated that would allow them to be measured in the tropical region. In the scientific literature, the transmittance and thermal resistance of the materials used in the envelope are the best-known parameters to evaluate its thermal performance. These are recommended by current regulations in our country to achieve good thermal performance in the design of buildings with high energy efficiency. However, it is discovered that the surface properties such as emittance (ε) and absorptance (α) of the envelopes exposed to climatic factors have recently acquired relevance in the evaluation of interior thermal performance, due to their impact on the interior surface temperature of the roof and, consequently, on the average radiant temperature inside the building. Methods were found that allowed evaluating the thermal performance on a hypothetical model by parameterizing surface properties in four types of roof. The indicators used under the TPI and °C/h methodology were applied to simulate the thermal performance in three climatic zones of Colombia. The results are exposed through tables and scatter plots comparing the surface temperature of covers with emittance (ε) 0.3 and (ε) 0.9 at various levels of absorptance (α). It is observed that the assignment of values to these properties, in the incorporation of passive cooling strategies, should not be generalized in a context characterized by climatic diversity, as it is in our region. ; Las propiedades superficiales de la envolvente arquitectónica son importantes a la hora de definir las estrategias del enfriamiento pasivo y del desempeño térmico en ambientes interiores. Para identificar su impacto, se investigaron metodologías que permitieran medir el desempeño térmico de las envolventes arquitectónicas en la región tropical. La ...
    • File Description:
      application/pdf
    • Relation:
      https://revistadearquitectura.ucatolica.edu.co/article/view/3702/4922; Alchapar, N., Correa, E., & Lesino, G. (2012). Estrategias de enfriamiento pasivo urbano: índice de reflectancia solar y relación costo-beneficio en pinturas para fachadas. Avances en Energías Renovables y Medio Ambiente, 16(10), 67-76. https://ri.conicet.gov.ar/handle/11336/68044; Alchapar, N., & Correa, E. (2013). Modificación de la reflectancia solar en la envolvente edilicia y su impacto sobre las temperaturas interiores. Avances en Energías Renovables y Medio Ambiente, 17, 29-38. http://sedici.unlp.edu.ar/handle/10915/143718; Alchapar, N., & Correa, E. (2015). Reflectancia solar de las envolventes opacas de la ciudad y su efecto sobre las temperaturas urbanas. Informes de La Construcción, 67(540). https://doi.org/10.3989/ic.14.131; Alchapar, N., Correa, E., & Cantón, A. (2018). ¿Techos reflectivos o verdes? Influencia sobre el microclima en ciudades de zonas áridas. Mendoza, Argentina. Cuadernos de Vivienda y Urbanismo, 11(22), 1-23. https://doi.org/https://doi.org/10.11144/Javeriana.cvu11-22.trvi; Alchapar, N., & Correa, E. N. (2020). Optothermal properties of façade coatings. Effects of environmental exposure over solar reflective index. Journal of Building Engineering, 32. https://doi.org/10.1016/j.jobe.2020.101536; ANSI/ASHRAE. (2013). Condiciones de ambiente térmico para ocupación humana. https://ashrae.iwrapper.com/ASHRAE_PREVIEW_ONLY_STANDARDS/STD_55_2013; Arumugam, R. S., Garg, V., Ram, V. V., & Bhatia, A. (2015). Optimizing roof insulation for roofs with high albedo coating and radiant barriers in India. Journal of Building Engineering, 2, 52-58. https://doi.org/10.1016/j.jobe.2015.04.004; Barrios, G., Huelsz, G., Rojas, J., Ochoa, J., & Marincic, I. (2012). Envelope wall/roof thermal performance parameters for non air-conditioned buildings. Energy and Buildings, 50, 120-127. https://doi.org/10.1016/j.enbuild.2012.03.030; Brito Filho, J., & Santos, T. (2014). Thermal analysis of roofs with thermal insulation layer and reflective coatings in subtropical and equatorial climate regions in Brazil. Energy and Buildings, 84, 466-474. https://doi.org/10.1016/j.enbuild.2014.08.042; de Dear, R., & Brager, G. (1998). Developing an adaptive model of thermal comfort and preference. UC Berkeley: Center for the Built Environment. Retrieved from https://escholarship.org/uc/item/4qq2p9c6; de Dear, R., & Brager, G. S. (2002). Thermal comfort in naturally ventilated buildings : revisions to ASHRAE Standard 55. Energy and Buildings, 34(6), 549-561. https://doi.org/10.1016/S0378-7788(02)00005-1; Fang, H., Zhao, D., Yuan, J., Aili, A., Yin, X., Yang, R., & Tan, G. (2019). Performance evaluation of a metamaterial-based new cool roof using improved Roof Thermal Transfer Value model. Applied Energy, 248, 589-599. https://doi.org/10.1016/j.apenergy.2019.04.116; Hu, J., & Yu, X. (2019). Adaptive thermochromic roof system: assessment of performance under different climates. Energy and Buildings, 192, 1-14. https://doi.org/10.1016/j.enbuild.2019.02.040; Huang, Z., & Ruan, X. (2017). Nanoparticle embedded double-layer coating for daytime radiative cooling. International Journal of Heat and Mass Transfer, 104, 89-896. https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.009; Kabre, C. (2010). A new thermal performance index for dwelling roofs in the warm humid tropics. Building and Environment, 45(3), 727-738. https://doi.org/10.1016/j.buildenv.2009.08.017; Levinson, R., Akbari, H., Konopacki, S., & Bretz, S. (2005). Inclusion of cool roofs in nonresidential Title 24 prescriptive requirements. Energy Policy, 33 (2), 151-170. https://doi.org/10.1016/S0301-4215(03)00206-4; López de Lucio, R., & Parrilla Gorbea, E. (1998). Espacio público e implantación comercial en la ciudad de Madrid. Calles comerciales versus grandes superficies. Cuadernos de Investigación Urbanística, 0(23). Recuperado de http://polired.upm.es/index.php/ciur/article/view/237; Loudon, A. (1968). Summertime temperatures in buildings without air-conditioning. Building Research Station Current Papers. https://eric.ed.gov/?id=ED035213; Murcia, J., Serna, J., & Zapata, H. (2017). Atlas de Viento de Colombia. http://atlas.ideam.gov.co/visorAtlasVientos.html; Muscio, A. (2018). The solar reflectance index as a tool to forecast the heat released to the urban environment: potentiality and assessment issues. Climate, 6(1). https://doi.org/10.3390/cli6010012; Radhi, H., Sharples, S., Taleb, H., & Fahmy, M. (2017). Will cool roofs improve the thermal performance of our built environment? A study assessing roof systems in Bahrain. Energy and Buildings, 135, 324-337. https://doi.org/10.1016/j.enbuild.2016.11.048; Resolución 0549 de 2015. (2015, 10 de julio). Ministerio de Vivienda, Ciudad y Territorio. https://www.minvivienda.gov.co/node/48921; Roriz, V., Dornelles, K., & Roriz, M. (2007, del 8 al 10 de agosto). Fatores determinantes da absortância solar de superfícies opacas [conferencia]. IX Encontro Nacional e V Latino Americano de Conforto No Ambiente Construído. https://doi.org/10.13140/RG.2.1.1622.3445; Roriz, V. (2011). Efeitos de ondulação e rugosidade de superfícies sobre suas absortâncias e emitâncias: modelo teórico e experimental [Tesis de doctorado, Universidade Estadual de Campinas]. Archivo digital. https://doi.org/10.47749/T/UNICAMP.2011.835160; Sameera, S., Vidyadharan, V., Sasidharan, S., & Gopchandran, K. G. (2019). Nanostructured zinc aluminates: a promising material for cool roof coating. Journal of Science: Advanced Materials and Devices, 4(4), 524-530. https://doi.org/10.1016/j.jsamd.2019.10.003; Santamouris, M., Synnefa, A., & Karlessi, T. (2011). Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions. Solar Energy, 85(12), 3085-3102. https://doi.org/10.1016/j.solener.2010.12.023; Santamouris, M. (2014). Cooling the cities – A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Solar Energy, 103, 682-703. https://doi.org/10.1016/j.solener.2012.07.003; Shi, D., Zhuang, C., Lin, C., Zhao, X., Chen, D., Gao, Y., & Levinson, R. (2019). Effects of natural soiling and weathering on cool roof energy savings for dormitory buildings in Chinese cities with hot summers. Solar Energy Materials and Solar Cells, 200. https://doi.org/10.1016/j.solmat.2019.110016; Silva Guerra, H. (2011). Comportamiento de las superficies de retail en Colombia. Pensamiento & Gestión, 30, 3-20. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1657-62762011000100002&lng=en&tlng=es.; Synnefa, A., Santamouris, M., & Livada, I. (2006). A study of the thermal performance of reflective coatings for the urban environment. Solar Energy, 80(8), 968-981. https://doi.org/10.1016/j.solener.2005.08.005; Synnefa, A., Santamouris, M., & Akbari, H. (2007a). Estimating the effect of using cool coatings on energy loads and thermal comfort in residential buildings in various climatic conditions. Energy and Buildings, 39(11), 1167-1174. https://doi.org/10.1016/j.enbuild.2007.01.004; Synnefa, A., Santamouris, M., & Apostolakis, K. (2007b). On the development, optical properties and thermal performance of cool colored coatings for the urban environment. Solar Energy, 81(4), 488-497. https://doi.org/10.1016/j.solener.2006.08.005; Vall, S., & Castell, A. (2017). Radiative cooling as low-grade energy source: a literature review. Renewable and Sustainable Energy Reviews, 77, 803-820. https://doi.org/10.1016/j.rser.2017.04.010; Vecslir Peri, L. (2005). Nuevas centralidades del ocio y el consumo: ámbitos, modalidades e instrumentos de regulación de las grandes superficies comerciales en la Región Metropolitana de Buenos Aires. Revista Iberoamericana de Urbanismo, 5, 31-44. https://upcommons.upc.edu/bitstream/handle/2099/12498/05_03_LorenaVecslirPeri.pdf?sequence=1&isAllowed=y; Yang, J., Mohan Kumar, D., Pyrgou, A., Chong, A., Santamouris, M., Kolokotsa, D., & Lee, S. (2018). Green and cool roofs’ urban heat island mitigation potential in tropical climate. Solar Energy, 173, 597-609. https://doi.org/10.1016/j.solener.2018.08.006; Zhai, Y., Ma, Y., David, S., Zhao, D., Lou, R., Tan, G., Yang, R., & Yin, X. (2017). Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science, 355(6329), 1062-1066. https://doi.org/10.1126/science.aai7899; https://revistadearquitectura.ucatolica.edu.co/article/view/3702
    • الرقم المعرف:
      10.14718/RevArq.2024.26.3702
    • الدخول الالكتروني :
      https://revistadearquitectura.ucatolica.edu.co/article/view/3702
      https://doi.org/10.14718/RevArq.2024.26.3702
    • Rights:
      Derechos de autor 2023 Juan-Esteban Tabares, Lucas Arango-Díaz ; https://creativecommons.org/licenses/by-nc/4.0
    • الرقم المعرف:
      edsbas.D50EEA1E