Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Quantifying membrane binding and diffusion with fluorescence correlation spectroscopy diffusion laws

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Institut de Recherche en Infectiologie de Montpellier (IRIM); Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM); Institute for Glycomics; Griffith University Brisbane; Artificial Evolution and Computational Biology (BEAGLE); Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS); Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL); Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 - Faculté des sciences (UCBL FS); Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-Université de Lyon; La pharmacologie des neurones et des astrocytes à l’aide des sciences du numérique (AISTROSIGHT); Université de Lyon-Université de Lyon-Centre Hospitalier Lyon Sud CHU - HCL (CHLS); Hospices Civils de Lyon (HCL)-Hospices Civils de Lyon (HCL)-Theranexus Lyon -Centre Inria de Lyon; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
    • بيانات النشر:
      CCSD
      Biophysical Society
    • الموضوع:
      2023
    • Collection:
      Portail HAL de l'Université Lumière Lyon 2
    • نبذة مختصرة :
      International audience ; Many transient processes in cells arise from the binding of cytosolic proteins to membranes. Quantifying this membrane binding and its associated diffusion in the living cell is therefore of primary importance. Dynamic photonic microscopies, e.g., single/multiple particle tracking, fluorescence recovery after photobleaching, and fluorescence correlation spectroscopy (FCS), enable non-invasive measurement of molecular mobility in living cells and their plasma membranes. However, FCS with a single beam waist is of limited applicability with complex, non-Brownian, motions. Recently, the development of FCS diffusion laws methods has given access to the characterization of these complex motions, although none of them is applicable to the membrane binding case at the moment. In this study, we combined computer simulations and FCS experiments to propose an FCS diffusion law for membrane binding. First, we generated computer simulations of spot-variation FCS (svFCS) measurements for a membrane binding process combined to 2D and 3D diffusion at the membrane and in the bulk/cytosol, respectively. Then, using these simulations as a learning set, we derived an empirical diffusion law with three free parameters: the apparent binding constant KD, the diffusion coefficient on the membrane D2D, and the diffusion coefficient in the cytosol, D3D. Finally, we monitored, using svFCS, the dynamics of retroviral Gag proteins and associated mutants during their binding to supported lipid bilayers of different lipid composition or at plasma membranes of living cells, and we quantified KD and D2D in these conditions using our empirical diffusion law. Based on these experiments and numerical simulations, we conclude that this new approach enables correct estimation of membrane partitioning and membrane diffusion properties (KD and D2D) for peripheral membrane molecules.
    • Relation:
      BIORXIV: 2022.09.12.507540
    • الرقم المعرف:
      10.1016/j.bpj.2023.01.006
    • الدخول الالكتروني :
      https://inria.hal.science/hal-04165544
      https://inria.hal.science/hal-04165544v1/document
      https://inria.hal.science/hal-04165544v1/file/Mouttouetal2023.pdf
      https://doi.org/10.1016/j.bpj.2023.01.006
    • Rights:
      http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.C9047457