Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Leveraging Data Seasonality and Matrix Profile for Anomaly Detection: Application to Climate Time Series

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Université de Montpellier (UM); Sciences environnementales guidées par les données (IROKO); Centre Inria d'Université Côte d'Azur; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM); Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut Montpelliérain Alexander Grothendieck (IMAG); Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM); UMR 228 Espace-Dev, Espace pour le développement; Institut de Recherche pour le Développement (IRD)-Université de Perpignan Via Domitia (UPVD)-Avignon Université (AU)-Université de La Réunion (UR)-Université de la Nouvelle-Calédonie (UNC)-Université de Guyane (UG)-Université des Antilles (UA)-Université de Montpellier (UM); Inria; PlaFRIM
    • بيانات النشر:
      CCSD
    • الموضوع:
      2025
    • Collection:
      Université de Montpellier: HAL
    • نبذة مختصرة :
      Seasonal time series analysis is fundamental in domains such as climate science, where detecting and understanding anomalies, patterns, and data changes are essential. The classical Matrix Profile approach does not consider the data's seasonality, failing to detect seasonal anomalies and patterns. This paper introduces the Interval Matrix Profile, a novel extension of the Matrix Profile specifically designed for analyzing periodic and seasonal time series data. The Interval Matrix Profile enables flexible interval-based comparisons across seasons, allowing the detection of anomalies that conventional approaches miss. We further propose the constrained k Nearest Neighbor Interval Matrix Profile, designed to identify anomalies that may appear across multiple periods, a common characteristic of abnormal climate events and extreme weather phenomena. Our approach leverages a scalable block-based algorithm that achieves significant performance gains through caching, vectorization, and parallelism. Additionally, we introduce a novel methodology to detect the first or last occurrence of a pattern, enabling the discovery of pattern emergence or disappearance within seasonal time series. The algorithms are demonstrated in case studies on temperature climate time series. They effectively capture seasonal anomalies and find pattern disappearance. Our results illustrate that the IMP consistently outperforms the classical Matrix Profile in the accuracy of seasonal anomaly detection and computational efficiency.
    • الدخول الالكتروني :
      https://inria.hal.science/hal-04906596
      https://inria.hal.science/hal-04906596v1/document
      https://inria.hal.science/hal-04906596v1/file/v2_Leveraging_Data_Seasonality_and_Matrix_Profile_for_Anomaly_Detection_in_Climate_Time_Series.pdf
    • Rights:
      http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.C0B549C5