نبذة مختصرة : Silicon photonics is recognized as a disruptive technology that has the potential to reshape many application areas, for example, data center communication, telecommunications, high-performance computing, and sensing. The key capability that silicon photonics offers is to leverage CMOS-style design, fabrication, and test infrastructure to build compact, energy-efficient, and high-performance integrated photonic systems-on- chip at low cost. As the need to squeeze more data into a given bandwidth and a given footprint increases, silicon photonics becomes more and more promising. This work develops and demonstrates novel devices, methodologies, and architectures to resolve the challenges facing the next-generation silicon photonic transceivers. The first part of this thesis focuses on the topology optimization of passive silicon photonic devices. Specifically, a novel device optimization methodology - particle swarm optimization in conjunction with 3D finite-difference time-domain (FDTD), has been proposed and proven to be an effective way to design a wide range of passive silicon photonic devices. We demonstrate a polarization rotator and a 90◦ optical hybrid for polarization-diversity and phase-diversity communications - two important schemes to increase the communication capacity by increasing the spectral efficiency. The second part of this thesis focuses on the design and characterization of the next- generation silicon photonic transceivers. We demonstrate a polarization-insensitive WDM receiver with an aggregate data rate of 160 Gb/s. This receiver adopts a novel architecture which effectively reduces the polarization-dependent loss. In addition, we demonstrate a III-V/silicon hybrid external cavity laser with a tuning range larger than 60 nm in the C-band on a silicon-on-insulator platform. A III-V semiconductor gain chip is hybridized into the silicon chip by edge-coupling to the silicon chip. The demonstrated packaging method requires only passive alignment and is thus suitable for high-volume ...
No Comments.