Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Asymptotic results of the randomly censored kernel-type expectile regression estimator for functional dependent data

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      جامعة جيلالي اليابس سيدي بلعباس، الجزائر = Université Djillali Liabès Sidi Bel Abbès, Algérie = Djillali Liabes University Sidi Bel Abbès, Algeria (UDL); Laboratoire de Mathématiques Appliquées de Compiègne (LMAC); Université de Technologie de Compiègne (UTC); Département de Mathématiques UDL, Sidi Bel Abbès; Open access funding provided by Université de Technologie de Compiègne. This research projectwas funded by the Deanship of Scientific Research at King Khalid University through the Research GroupsProgram under grant number R.G.P./128/46.
    • بيانات النشر:
      CCSD
      Springer Verlag
    • الموضوع:
      2025
    • Collection:
      Université de Technologie de Compiègne: HAL
    • نبذة مختصرة :
      International audience ; This study examines the intricate process of estimating nonparametrically in expectile regression models for functional time series data that exhibit strong mixing properties within the context of a random right-censoring model. Specifically, we establish the almost complete consistency and asymptotic normality of the kernel-based expectile regression estimator. Notably, these results are derived in an asymptotic setting and are applicable under reasonably broad assumptions about the underlying model. Furthermore, we explore the practical implications of our theoretical findings in analyzing financial time series. To evaluate the performance of the proposed estimator on finite samples, we conducted comprehensive Monte Carlo simulations. These simulations provide a quantitative assessment of the estimator’s accuracy and efficiency under various scenarios, allowing for a thorough understanding of its practical utility.
    • الرقم المعرف:
      10.1007/s11203-025-09328-7
    • الدخول الالكتروني :
      https://hal.science/hal-05120336
      https://hal.science/hal-05120336v1/document
      https://hal.science/hal-05120336v1/file/s11203-025-09328-7.pdf
      https://doi.org/10.1007/s11203-025-09328-7
    • Rights:
      http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.B4810C50