Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

The Frisch-Parisi conjecture I: Prescribed multifractal behavior, and a partial solution

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Université Sorbonne Paris Nord; Laboratoire Analyse, Géométrie et Applications (LAGA); Université Paris 8 (UP8)-Centre National de la Recherche Scientifique (CNRS)-Université Sorbonne Paris Nord; Laboratoire d'Analyse et de Mathématiques Appliquées (LAMA); Université Paris-Est Marne-la-Vallée (UPEM)-Fédération de Recherche Bézout (BEZOUT); Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS); Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12); Laboratoire d'Analyse et de Mathématiques Appliquées; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Marne-la-Vallée (UPEM)-Fédération de Recherche Bézout (BEZOUT)
    • بيانات النشر:
      CCSD
      Elsevier
    • الموضوع:
      2023
    • Collection:
      Université Paris Lumières: HAL
    • نبذة مختصرة :
      32 pages, 3 Figures ; International audience ; In this work and its companion, we construct Baire function spaces in which typical elements share the same prescribed multifractal behavior and obey a multifractal formalism, providing a solution to the so-called Frisch-Parisi conjecture for functions, an inverse problem raised by S. Jaffard. In this first part, a family~$\mathscr{E}_d$ of almost-doubling fully supported capacities on $\R^d$ with prescribed singularity spectra is constructed. With each $\mu\in \mathscr{E}_d$ we associate a Baire function space $\boldsymbol{B}^{\mu}(\R^d)$ (a generalisation of H\"older-Zygmund spaces) in which typical functions share the same singularity spectrum as $\mu$. This yields a partial solution to the conjecture. In~\cite{BS-FP-2}, we introduce and study a family $\boldsymbol{B}=\{\boldsymbol{B}^{\mu,p}_{q}(\R^d)\}_{\mu\in\mathscr E_d, (p,q)\in[1,+\infty]^2}$ of \textit{heterogeneous} Besov spaces that contains $\{\boldsymbol{B}^{\mu}(\R^d)\}_{\mu\in\mathscr E_d}$ and generalises in a natural direction the family of standard Besov spaces, and we solve the inverse problem exhaustively inside~$\boldsymbol{B}$.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/2007.00971; ARXIV: 2007.00971
    • الرقم المعرف:
      10.1016/j.matpur.2023.05.003
    • الدخول الالكتروني :
      https://cnrs.hal.science/hal-02899957
      https://cnrs.hal.science/hal-02899957v2/document
      https://cnrs.hal.science/hal-02899957v2/file/Barral-Seuret-part1.pdf
      https://doi.org/10.1016/j.matpur.2023.05.003
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.AE317604