Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Equivalence of the Empirical Risk Minimization to Regularization on the Family of f-Divergences

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Department of Automatic Control and Systems Engineering Sheffield (ACSE); University of Sheffield Sheffield; Network Engineering and Operations (NEO); Centre Inria d'Université Côte d'Azur; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria); Department of Electrical and Computer Engineering Princeton (ECE); Princeton University; Laboratoire de Géométrie Algébrique et Applications à la Théorie de l'Information (GAATI); Université de la Polynésie Française (UPF); IEEE; European Project: 872172,H2020-MSCA-RISE-2019,H2020-MSCA-RISE-2019,TESTBED2(2020)
    • بيانات النشر:
      CCSD
    • الموضوع:
      2024
    • Collection:
      HAL Université Côte d'Azur
    • الموضوع:
    • نبذة مختصرة :
      International audience ; The solution to empirical risk minimization with f-divergence regularization (ERM-fDR) is presented under mild conditions on f. Under such conditions, the optimal measure is shown to be unique. Examples of the solution for particular choices of the function f are presented. Previously known solutions to common regularization choices are obtained by leveraging the flexibility of the family of f-divergences. These include the unique solutions to empirical risk minimization with relative entropy regularization (Type-I and Type-II). The analysis of the solution unveils the following properties of f-divergences when used in the ERM-fDR problem: i) f-divergence regularization forces the support of the solution to coincide with the support of the reference measure, which introduces a strong inductive bias that dominates the evidence provided by the training data; and ii) any f-divergence regularization is equivalent to a different f-divergence regularization with an appropriate transformation of the empirical risk function.
    • Relation:
      info:eu-repo/grantAgreement//872172/EU/Testing and Evaluating Sophisticated information and communication Technologies for enaBling scalablE smart griD Deployment/TESTBED2
    • الرقم المعرف:
      10.1109/ISIT57864.2024.10619260
    • الدخول الالكتروني :
      https://hal.science/hal-04431558
      https://hal.science/hal-04431558v2/document
      https://hal.science/hal-04431558v2/file/ISIT_2024a_HAL_V2.pdf
      https://doi.org/10.1109/ISIT57864.2024.10619260
    • Rights:
      http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.A904077E