Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Definition, existence, stability and uniqueness of the solution to a semilinear elliptic problem with a strong singularity at u = 0

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Giachetti, D.; Martinez-Aparicio, P. J.; Murat, F.
    • بيانات النشر:
      Edizioni della Normale
    • الموضوع:
      2018
    • Collection:
      Sapienza Università di Roma: CINECA IRIS
    • نبذة مختصرة :
      In this paper we consider a semilinear elliptic equation with a strong singularity at $u=0$, namely \begin{equation*} \begin{cases} \dys u\geq 0 & \mbox{in } \Omega,\\ \displaystyle - div \,A(x) D u = F(x,u)& \mbox{in} \; \Omega,\\ u = 0 & \mbox{on} \; \partial \Omega,\\ \end{cases} \end{equation*} with $F(x,s)$ a Carath\'eodory function such that $$ 0\leq F(x,s)\leq \frac{h(x)}{\Gamma(s)}\,\,\mbox{ a.e. } x\in\Omega,\, \forall s>0, $$ with $h$ in some $L^r(\Omega)$ and $\Gamma$ a $C^1([0,+\infty[)$ function such that $\Gamma(0)=0$ and $\Gamma'(s)>0$ for every $s>0$. We introduce a notion of solution to this problem in the spirit of the solutions defined by transposition. This definition allows us to prove the existence and the stability of this solution, as well as its uniqueness when $F(x,s)$ is nonincreasing in $s$.
    • File Description:
      STAMPA
    • Relation:
      info:eu-repo/semantics/altIdentifier/wos/WOS:000446299700006; journal:ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE; http://hdl.handle.net/11573/1051334
    • الرقم المعرف:
      10.2422/2036-2145.201612_008
    • الدخول الالكتروني :
      http://hdl.handle.net/11573/1051334
      https://doi.org/10.2422/2036-2145.201612_008
    • Rights:
      info:eu-repo/semantics/openAccess
    • الرقم المعرف:
      edsbas.9CD602B6