Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Fundamentals on Transparency, Reproducibility and Validation

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS); Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS); Service Informatique et développements; Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL); Faculty of Engineering and Computer Science Concordia University (ENCS); Concordia University Montreal; Modeling & analysis for medical imaging and Diagnosis (MYRIAD); ANR-21-CE45-0024,ReproVIP,Science reproductible avec VIP(2021); ANR-11-LABX-0063,PRIMES,Physique, Radiobiologie, Imagerie Médicale et Simulation(2011)
    • بيانات النشر:
      CCSD
    • الموضوع:
      2024
    • Collection:
      Université de Lyon: HAL
    • نبذة مختصرة :
      International audience ; Transparency, reproducibility, and validation are fundamental concepts in research. Their definitions may vary among research disciplines (sometimes even lacking global agreement), but they all share common elements and practices. This chapter introduces the three concepts. Then, after discussing their definitions and interconnections, it illustrates their role in three main components of medical imaging studies — analyses, software, and data. For the three components, the chapter introduces methods and practical tools such as cross-validation, pre-registration, notebooks, code and data sharing, containerization, continuous integration, test-retest analysis, data quality, and challenges. Finally, some of these tools are illustrated through a concrete example from an ongoing initiative.
    • الدخول الالكتروني :
      https://hal.science/hal-04649249
      https://hal.science/hal-04649249v1/document
      https://hal.science/hal-04649249v1/file/Camarasu-Pop_final.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.9284124C