Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

A Deep Learning Approach to Spatiotemporal Sea Surface Height Interpolation and Estimation of Deep Currents in Geostrophic Ocean Turbulence

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Laboratoire de Météorologie Dynamique (UMR 8539) (LMD); Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X); Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-École nationale des ponts et chaussées (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS-PSL; École normale supérieure - Paris (ENS-PSL); Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL); Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL); Laboratoire d'Océanographie Physique et Spatiale (LOPS); Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)
    • بيانات النشر:
      CCSD
      American Geophysical Union
    • الموضوع:
      2021
    • Collection:
      École des Ponts ParisTech: HAL
    • نبذة مختصرة :
      International audience ; Satellite altimeters provide global observations of sea surface height (SSH) and present a unique data set for advancing our theoretical understanding of upper-ocean dynamics and monitoring its variability. Considering that mesoscale SSH patterns can evolve on timescales comparable to or shorter than satellite return periods, it is challenging to accurately reconstruct the continuous SSH evolution as currently available altimetry observations are still spatially and temporally sparse. Here we explore the possibility of SSH interpolation via Deep Learning by using synthetic observations from an idealized quasigeostrophic model of baroclinic ocean turbulence. We demonstrate that Convolutional Neural Networks with Residual Learning are superior in SSH reconstruction to linear and recently developed dynamical interpolation techniques. Also, the deep neural networks can provide a skillful state estimate of unobserved deep ocean currents at mesoscales. These conspicuous results suggest that SSH patterns of eddies might contain substantial information about the underlying deep ocean currents that are necessary for SSH prediction. Our training data are focused on highly idealized physics and diversification of processes needs to be considered to more accurately represent the real ocean. In addition, methodological improvements such as transfer learning and implementation of dynamically aware loss functions might be necessary to consider before its ultimate use with real satellite observations. Nonetheless, by providing a proof of concept based on synthetic data, our results point to deep learning as a viable alternative to existing interpolation and, more generally, state estimation methods for satellite observations of eddying currents.
    • Relation:
      BIBCODE: 2021JAMES.1301965M
    • الرقم المعرف:
      10.1029/2019MS001965
    • الدخول الالكتروني :
      https://insu.hal.science/insu-03683275
      https://insu.hal.science/insu-03683275v1/document
      https://insu.hal.science/insu-03683275v1/file/J%20Adv%20Model%20Earth%20Syst%20-%202020%20-%20Manucharyan%20-%20A%20Deep%20Learning%20Approach%20to%20Spatiotemporal%20Sea%20Surface%20Height%20Interpolation.pdf
      https://doi.org/10.1029/2019MS001965
    • Rights:
      http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.7B05B23D