Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Data Mining with Shallow vs. Linguistic Features to Study Diversification of Scientific Registers

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • الموضوع:
      2014
    • Collection:
      LeibnizOpen (The Leibniz Association)
    • نبذة مختصرة :
      We present a methodology to analyze the linguistic evolution of scientific registers with data mining techniques, comparing the insights gained from shallow vs. linguistic features. The focus is on selected scientific disciplines at the boundaries to computer science (computational linguistics, bioinformatics, digital construction, microelectronics). The data basis is the English Scientific Text Corpus (SCITEX) which covers a time range of roughly thirty years (1970/80s to early 2000s) (Degaetano-Ortlieb et al., 2013; Teich and Fankhauser, 2010). In particular, we investigate the diversification of scientific registers over time. Our theoretical basis is Systemic Functional Linguistics (SFL) and its specific incarnation of register theory (Halliday and Hasan, 1985). In terms of methods, we combine corpus-based methods of feature extraction and data mining techniques.
    • File Description:
      application/pdf
    • الدخول الالكتروني :
      https://ids-pub.bsz-bw.de/frontdoor/index/index/docId/2617
      https://nbn-resolving.org/urn:nbn:de:bsz:mh39-26178
      https://ids-pub.bsz-bw.de/files/2617/Fankhauser_etc_Data%20Mining_2014.pdf
    • Rights:
      Urheberrechtlich geschützt
    • الرقم المعرف:
      edsbas.71795251