Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Sharp well-posedness and blowup results for parabolic systems of the Keller-Segel type

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Institute of Mathematics Wrocław; University of Wrocław Poland (UWr); Modélisation mathématique, calcul scientifique (MMCS); Institut Camille Jordan (ICJ); École Centrale de Lyon (ECL); Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS); Équations aux dérivées partielles, analyse (EDPA)
    • بيانات النشر:
      HAL CCSD
      International Press
    • الموضوع:
      2023
    • Collection:
      Université Jean Monnet – Saint-Etienne: HAL
    • نبذة مختصرة :
      International audience ; We study two toy models obtained after a slight modification of the nonlinearity of the usual doubly parabolic Keller-Segel system. For these toy models, both consisting of a system of two parabolic equations, we establish that for data which are, in a suitable sense, smaller than the diffusion parameter τ in the equation for the chemoattractant, we obtain global solutions, and for some data larger than τ , a finite time blowup. In this way, we check that our size condition for the global existence is sharp for large τ , up to a logarithmic factor.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/2206.10399; hal-03699868; https://hal.science/hal-03699868; https://hal.science/hal-03699868/document; https://hal.science/hal-03699868/file/KS-large-solutions-paper%202%20Submitted%20to%20AFST.pdf; ARXIV: 2206.10399
    • الرقم المعرف:
      10.4310/MAA.2023.v30.n2.a1
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.6EF49087