Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Clustering with Stable Pattern Concepts

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA); Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS); Vysšaja škola èkonomiki = National Research University Higher School of Economics Moscow (HSE); Knowledge representation, reasonning (ORPAILLEUR); Department of Natural Language Processing & Knowledge Discovery (LORIA - NLPKD); Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA); Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS); ANR-21-CE23-0023,SmartFCA,Analyse Formelle de Concepts : un outil intelligent pour l'anayse de données complexes(2021)
    • بيانات النشر:
      CCSD
    • الموضوع:
      2024
    • Collection:
      Université de Lorraine: HAL
    • الموضوع:
    • نبذة مختصرة :
      International audience ; Clustering aims at finding disjoint groups of similar objects in data and is one major task in Machine Learning. It is also gaining more attention in Formal Concept Analysis community in these last years. This paper proposes an original approach to the clustering of complex data based on Formal Concept Analysis (FCA) and Pattern Structures. Stable concepts are considered as cluster candidates and the SOFIA algorithm is used to discover the set of stable concepts in linear time. Then an algorithm inspired by a rare itemset mining algorithm is designed to build a clustering with good properties, i.e., high internal cohesion within a cluster and high external separation between the clusters. Some interestingness measures allowing us to choose the best clustering are discussed. Finally the present approach is compared to some other well-known algorithms such as KMeans, DBScan, and Optic.
    • الدخول الالكتروني :
      https://hal.science/hal-04974852
      https://hal.science/hal-04974852v1/document
      https://hal.science/hal-04974852v1/file/FCA4AI_2024_Stable_Pattern_Concept_Clustering.pdf
    • Rights:
      http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.6B20D4E5