نبذة مختصرة : Emulsions are metastable systems typically formed in the presence of surfactant molecules, amphiphilic polymers, or solid particles, as a mixture of two mutually immiscible liquids, one of which is dispersed as very small droplets in the other. These dispersions are unwanted occurrences in some areas, like those formed during crude oil production, but are also put into many other useful applications in the oil and gas industry, food industry, and construction industry, among others. These emulsions form when two immiscible liquids come together in the presence of an emulsifying agent and sufficient agitation strong enough to disperse one of the liquids in the other. Thermodynamically, these emulsions are unstable and thus would separate into their individual phases when left alone. To be stabilized, surface-active agents (surfactants) or solids (that act in so many ways like surfactants) ought to be used. Like many commercially available products, several pharmaceutical products are usually supplied in the form of emulsions that must be stabilized before they are being administered. Pharmaceutical emulsions used for oral administration either as medications themselves or as carriers come in form of stable emulsions. Either water-in-oil (w/o) or oil-in-water (o/w), these emulsions after formulation must be classified, majorly as stable or unstable. Only formulations that give stable emulsions are used, and the unstable ones reformulated or discarded. Classifying such emulsions using results obtained by visual observation in most cases can be very tedious and inaccurate. This necessitates the use of a more scientific and intelligent method of classification. The objective of this study is to employ support vector machine (SVM) as a new technique to classify synthetic emulsions. The study will assess the effects of nonionic surfactant (sodium monooleate) and Laponite clay (LC) on the stability of synthetic emulsions prepared using a response surface methodology (RSM) based on a Box-Behnken design. The stability of ...
No Comments.