Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

The performance of differential point positioning using low-cost GNSS in comparison to DInSAR for monitoring coseismic displacement of the Provenzana–Pernicana fault system (Mt. Etna, 2018 December eruptive phase)

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      School of Engineering, Newcastle University, Newcastle Upon Tyne, UK; Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia; Geospatial Research Ltd, Department of Earth Sciences, Durham University, UK; Department of Earth Sciences, Durham University, UK; Department of Earth and Planetary Sciences, Birkbeck College, Malet Street, London, WC1E 7HX, UK
    • بيانات النشر:
      Oxford University Press - The Royal Astronomical Society
    • الموضوع:
      2023
    • Collection:
      Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia)
    • نبذة مختصرة :
      Mt. Etna is a perfect laboratory for testing new approaches and new technologies in a very active geodynamic environment. It offers, in fact, the opportunity for measuring active crustal deformation, related to volcanic activity as well as to seismic faulting on its flanks. In this work, a network of low-cost/low-power Global Navigation Satellite System stations has been installed and tested on Mt. Etna, across a very active fault, the Provenzana–Pernicana system, cutting its north-eastern flank. During the test period, a lateral eruption occurred (starting on 2018 December 24), with a forceful dyke intrusion that stressed all the flanks of the volcano, soliciting all the main faults dissecting the edifice. Also the Provenzana–Pernicana fault system, where this network was recording, was activated during the dyke intrusion, producing a significant seismic swarm. The low-cost/low-power network data analysis allowed the fault slip during the intrusion to be clearly traced in time and space at all the stations lying on the hangingwall mobile block of the fault. All the stations lying south of the fault trace showed an eastward displacement, in very good agreement with the usual kinematics of the fault and the temporal duration of the M 3.5 December 24 earthquake, related to the seaward dislocation of the eastern mobile flank of the volcano, promoted and accelerated by dyke emplacement on the upper part of the edifice. ; Published ; 1012-1023 ; 2T. Deformazione crostale attiva ; JCR Journal
    • File Description:
      application/pdf
    • ISSN:
      0956-540X
    • Relation:
      Geophysical Journal International; /234 (2023); Acocella, V., Behncke, B., Neri, M. & D’Amico, S., 2003. Link between major flank slip and 2002–2003 eruption at Mt. Etna (Italy), Geophys. Res. Lett., 30(24), 2286. doi:10.1029/2003GL018642 Acocella, V. & Neri, M., 2005. Structural features of an active strike–slip fault on the sliding flank ofMt. Etna (Italy), J. Struct. Geol., 27, 343–355. Acocella, V, Neri, M, Behncke, B, Bonforte, A, Del Negro, C & Ganci, G, 2016. Why does a mature volcano need new vents? The case of the new southeast crater at Etna, Front. Earth Sci., 4, 67. doi:10.3389/feart.2016.00067 Alparone, S., Barberi, G., Bonforte, A., Maiolino, V. & Ursino, A., 2011. Evidence of multiple strain fields beneath the eastern flank of Mt. Etna volcano (Sicily, Italy) deduced from seismic and geodetic data during 2003–2004, Bull. Volcanol., 73, 869–885. Alparone, S, Bonaccorso, A, Bonforte, A & Currenti, G, 2013. Long-term stress-strain analysis of volcano flank instability: the eastern sector of Etna from 1980 to 2012, J. geophys. Res., 118, 5098–5108 Azzaro, R., 2004. Seismicity and active tectonic in the Etna region: constrain for seismotectonic model, in: Bonaccorso, A., Calvari, S., Coltelli, M., Del Negro, C. & Falsaperla, S.(Eds.), Mt. Etna Volcano Laboratory. Am. Geoph. Union (Geophysical monograph series). American Geophysical Union, vol. 143, pp. 205–220. Barreca, G, Bonforte, A & Neri, M(2013). A pilot GIS database of active faults of Mt. Etna (Sicily): a tool for integrated hazard evaluation, J. Volc. Geotherm. Res., 251, 170–186. Bonforte, A., Branca, S. & Palano, M., 2007a. Geometric and kinematic variations along the active Pernicana fault: implication for the dynamics of Mount Etna NE flank (Italy), J. Volc. Geotherm. Res., 160, 210–222 Bonforte, A., Gambino, S., Guglielmino, F., Obrizzo, F., Palano, M. & Puglisi, G., 2007b. Ground deformationmodeling of flank dynamics prior to the 2002 eruption of Mt. Etna, Bull. Volcanol., 69, 757–768 Bonforte, A., Gambino, S. & Neri, M., 2009. Intrusion of eccentric dikes: the case of the 2001 eruption and its role in the dynamics of Mt. Etna volcano, Tectonophys., 471, 78–86 Bonforte, A., Guglielmino, F., Coltelli, M., Ferretti, A. & Puglisi, G., 2011. Structural assessment of Mount Etna volcano from Permanent Scatterers analysis, Geochem. Geophys. Geosyst., 12, Q02002, doi:10.1029/2010GC003213. Bonforte, A, Guglielmino, F&Puglisi, G, 2013. Interaction between magma intrusion and flank dynamics at Mt. Etna in 2008, imaged by integrated dense GPS and DInSAR data, Geochem. Geophys. Geosyst., 14, 2818– 2835. Bonforte, A., Guglielmino, F. & Puglisi, G., 2019. Large dyke intrusion and small eruption: the December 24, 2018 Mt. Etna eruption imaged by Sentinel-1 data, Terra Nova, 31, 405–412 Cannata, A., et al. 2021. Repeating earthquakes and ground deformation reveal the structure and triggering mechanisms of the Pernicana fault, Mt. Etna, Comm Earth and Environ., 116, doi:10.1038/s43247- 021-00188-6. Guglielmino, F., Bignami, C., Bonforte, A., Briole, P., Obrizzo, F., Puglisi, G., Stramondo, S. &Wegmuller, U., 2011. Analysis of satellite and in situ ground deformation data integrated by the SISTEM approach: the April 3, 2010 earthquake along the Pernicana fault (Mt. Etna - Italy) case study, Earth Planet. Sci. Lett., 312, 327–336. Hofmann-Wellenhof, B., Lichtenegger, H. & Collins, J., 2012. Global Positioning System: Theory and Practice. Springer Science & Business Media. Jarvis, A., Reuter, H., Nelson, A. & Guevara, E., 2008. Hole-filled seamless SRTM data V4. Tech. rep., International Centre for Tropical Agriculture (CIAT). Cali, Columbia. Neri, M., Guglielmino, F. & Rust, D., 2007. Flank instability on Mount Etna: radon, radar interferometry and geodetic data from the southwestern boundary of the unstable sector, J. geophys. Res., 112, doi:10.1029/2006JB004756. Tibaldi, A. & Groppelli, G., 2002. Volcano-tectonic activity along tructures of the unstable NE flank of Mt Etna (Italy) and their possible origin, J. Volc. Geotherm. Res., 115, 277–302. Zumberge, J.F., Heflin, M.B., Jefferson, D.C.,Watkins, M.M. &Webb, F.H., 1997. Precise point positioning for the efficient and robust analysis of GPS data from large networks, J. geophys. Res., 102(B3), 5005–5017.; https://academic.oup.com/gji/article/234/2/1012/7080143
    • الرقم المعرف:
      10.1093/gji/ggad118
    • الدخول الالكتروني :
      https://www.earth-prints.org/handle/2122/16426
      https://academic.oup.com/gji/article/234/2/1012/7080143
      https://doi.org/10.1093/gji/ggad118
    • Rights:
      Attribution-ShareAlike 3.0 United States ; http://creativecommons.org/licenses/by-sa/3.0/us/
    • الرقم المعرف:
      edsbas.5F2549D4