Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Developments in electrically conductive bio-composites for use in additive manufacturing

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Chairperson, Graduate Committee: Cecily Ryan; Cecily Ryan was a co-author of the article, 'Incorporation of carbon nanofillers tunes mechanical and electrical percolation in PHBV:PLA blends' in the journal 'Polymers' which is contained within this thesis.
    • بيانات النشر:
      Montana State University - Bozeman, College of Engineering
    • الموضوع:
      2019
    • Collection:
      Montana State University (MSU): ScholarWorks
    • نبذة مختصرة :
      With the growth of rapid production methods, such as additive manufacturing, petroleum derived plastics are becoming ever more prevalent in consumer homes and landfills. As the industry grows, research into a more circular approach to designing and using materials is critical to maintaining sustainability. Bioplastics such as poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and poly(lactic acid) (PLA) provide material properties comparable to petroleum derived plastics and are becoming more common in the additive manufacturing field. Biobased fillers, such as bio-derived cellulose, lignin byproducts, and biochar, can be used to modify the thermal, mechanical, and electrical properties of polymer composites. Biochar (BioC), in particular, is of interest for enhancing thermal and electrical conductivities in composites, and can potentially serve as a bio-derived graphitic carbon alternative for certain composite applications. In this work, we investigate a blended biopolymer system: PLA/PHBV, and addition of carbon black (CB), a commonly used functional filler as a comparison for Kraft lignin-derived BioC. We present calculations and experimental results for phase-separation and nanofiller phase affinity in this system, indicating that the CB localizes in the PHBV phase of the immiscible PHBV:PLA blends. The addition of BioC led to a deleterious reaction with the biopolymers, as indicated by blend morphology, differential scanning calorimetry showing significant melting peak reduction for the PLA phase, and a reduction in melt viscosity. For the CB nanofilled composites, electrical conductivity and dynamic mechanical analysis supported the ability to use phase separation in these blends to tune the percolation of mechanical and electrical properties, with a minimum percolation threshold found for the 80:20 blends of 1.6 wt.% CB. At 2% BioC (approximately the percolation threshold for CB), the 80:20 BioC nanocomposites had a resistance of 3.43x10 8 Omega as compared to 2.99x10 8 Omega for the CB, indicating that ...
    • File Description:
      application/pdf
    • Relation:
      https://scholarworks.montana.edu/xmlui/handle/1/15520
    • الدخول الالكتروني :
      https://scholarworks.montana.edu/xmlui/handle/1/15520
    • Rights:
      Copyright 2019 by Jesse Whitney Arroyo
    • الرقم المعرف:
      edsbas.556D46A3