Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Silent sources on a surface for the Helmholtz equation and decomposition of L² vector fields

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Analyse fonctionnelle pour la conception et l'analyse de systèmes (FACTAS); Centre Inria d'Université Côte d'Azur; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria); Inversion of Differential Equations For Imaging and physiX (IDEFIX); Unité de Mathématiques Appliquées (UMA); École Nationale Supérieure de Techniques Avancées (ENSTA Paris); Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-École Nationale Supérieure de Techniques Avancées (ENSTA Paris); Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-EDF R&D (EDF R&D); EDF (EDF)-EDF (EDF)-Centre Inria de l'Institut Polytechnique de Paris; Centre Inria de Saclay; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre Inria de Saclay; Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris); Institut Polytechnique de Paris (IP Paris); This work was founded in part by the postdoctoral fellowship “Labex Mathématiques Hadamard” in Mathematics in Computational Science and Engineering.
    • بيانات النشر:
      CCSD
      Society for Industrial and Applied Mathematics
    • الموضوع:
      2025
    • Collection:
      ENSTA ParisTech, Université Paris-Saclay: HAL (École Nationale Supérieure de Techniques Avancées)
    • نبذة مختصرة :
      accepted for publication in SIMA ; International audience ; We study an inverse source problem with right hand side in divergence form for the Helmholtz equation, whose underlying model can be related to weak scattering from thin interfaces. This inverse problem is not uniquely solvable, as the forward operator has infinite-dimensional kernel. We present a decomposition of (not necessarily tangent) vector fields of L 2-class on a closed Lipschitz surface in R 3 , which allows one to discuss an ansatz for the solution and constraints that restore uniqueness. This work can be seen as a generalization of references [4, 6] dealing with the Laplace equation, but in the Helmholtz case new ties arise between the observations from each side of the surface. Our proof is based on properties of the Calderón projector on the boundary of Lipschitz domains, that we establish in a H-1 × L 2 setting.[4] L. Baratchart, C. Gerhards, and A. Kegeles. Decomposition of l 2-vector fields on lipschitz surfaces: characterization vianull-spaces of the scalar potential. SIAM Journal on Mathematical Analysis, 2021.[6] L. Baratchart, C. Villalobos Guillén, D. P. Hardin, M. C. Northington, and E. B. Saff. Inverse potential problems fordivergence of measures with total variation regularization. Foundations of Computational Mathematics, Nov 2019.
    • الرقم المعرف:
      10.1137/23M1626578
    • الدخول الالكتروني :
      https://hal.science/hal-04367726
      https://hal.science/hal-04367726v2/document
      https://hal.science/hal-04367726v2/file/helmholtz_siamMA.pdf
      https://doi.org/10.1137/23M1626578
    • Rights:
      http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.49218764