Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Wavelet-based statistical classification of skin images acquired with reflectance confocal microscopy

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Traitement et Compréhension d’Images (IRIT-TCI); Institut de recherche en informatique de Toulouse (IRIT); Université Toulouse Capitole (UT Capitole); Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J); Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3); Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP); Université de Toulouse (UT)-Toulouse Mind & Brain Institut (TMBI); Université Toulouse - Jean Jaurès (UT2J); Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3); Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole); Université de Toulouse (UT); Laboratoire de Pharmacochimie Pierre Fabre Dermo-Cosmétique; Centre de Recherche Pierre Fabre (Centre de R&D Pierre Fabre); PIERRE FABRE-PIERRE FABRE; CoMputational imagINg anD viSion (IRIT-MINDS); Institut National Polytechnique (Toulouse) (Toulouse INP)
    • بيانات النشر:
      CCSD
      Optical Society of America - OSA Publishing
    • الموضوع:
      2017
    • Collection:
      Université Toulouse 2 - Jean Jaurès: HAL
    • نبذة مختصرة :
      International audience ; Detecting skin lentigo in reflectance confocal microscopy images is an important and challenging problem. This imaging modality has not yet been widely investigated for this problem and there are a few automatic processing techniques. They are mostly based on machine learning approaches and rely on numerous classical image features that lead to high computational costs given the very large resolution of these images. This paper presents a detection method with very low computational complexity that is able to identify the skin depth at which the lentigo can be detected. The proposed method performs multiresolution decomposition of the image obtained at each skin depth. The distribution of image pixels at a given depth can be approximated accurately by a generalized Gaussian distribution whose parameters depend on the decomposition scale, resulting in a very-low-dimension parameter space. SVM classifiers are then investigated to classify the scale parameter of this distribution allowing real-time detection of lentigo. The method is applied to 45 healthy and lentigo patients from a clinical study, where sensitivity of 81.4% and specificity of 83.3% are achieved. Our results show that lentigo is identifiable at depths between 50μm and 60μm, corresponding to the average location of the the dermoepidermal junction. This result is in agreement with the clinical practices that characterize the lentigo by assessing the disorganization of the dermoepidermal junction.
    • الرقم المعرف:
      10.1364/BOE.8.005450
    • الدخول الالكتروني :
      https://hal.science/hal-01677588
      https://hal.science/hal-01677588v1/document
      https://hal.science/hal-01677588v1/file/Halimi_19377.pdf
      https://doi.org/10.1364/BOE.8.005450
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.400FF1F8