Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

C-band Scatterometer (CScat): the first global long-term satellite radar backscatter data set with a C-band signal dynamic

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Peking University Beijing; Centre d'études spatiales de la biosphère (CESBIO); Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3); Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP); Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE); South China Normal University Guangdong, China = Université normale de Chine du Sud Canton, Chine = 華南師范大學 (SCNU); Interactions Sol Plante Atmosphère (UMR ISPA); Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE); Jet Propulsion Laboratory (JPL); NASA-California Institute of Technology (CALTECH); Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE); Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)); Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA); Evolution et Diversité Biologique (EDB); Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS); Laboratoire sciences et technologies de l'information géographique (LaSTIG); Ecole des Ingénieurs de la Ville de Paris (EIVP)-École nationale des sciences géographiques (ENSG); Institut National de l'Information Géographique et Forestière IGN (IGN)-Université Gustave Eiffel-Institut National de l'Information Géographique et Forestière IGN (IGN)-Université Gustave Eiffel; Lawrence Berkeley National Laboratory Berkeley (LBNL); Chongqing University Chongqing; Zhengzhou University; Chinese Academy of Sciences Beijing (CAS)
    • بيانات النشر:
      CCSD
      Copernicus Publications
    • الموضوع:
      2022
    • Collection:
      Institut National de la Recherche Agronomique: ProdINRA
    • نبذة مختصرة :
      International audience ; Abstract. Satellite radar backscatter contains unique information on land surface moisture, vegetation features, and surface roughness, and can be acquired in all weather conditions, thus has been used in a range of earth science disciplines. However, there is no single global radar data set that spans more than two decades. This has limited the use of radar data for trend analysis over extended time intervals. We here provide the first long-term (since 1992), high resolution (~8.9 km) satellite radar backscatter data set over global land areas, the C-band Scatterometer (CScat) data set, by fusing signals from European Remote Sensing satellite (ERS, 1992–2001, C-band, 5.3 GHz), Quick Scatterometer (QSCAT, 1999–2009, Ku-band, 13.4 GHz), and the Advanced Scatterometer (ASCAT, since 2007, C-band, 5.255 GHz). The six-year data gap between C-band ERS and ASCAT was filled out by modelling an equivalent C-band signal during 1999–2009 from Ku-band QSCAT signals and climatic information. Towards this purpose, we first rescaled the signals from different sensors, pixel by pixel, using a new signal rescaling method that is robust to limited overlapping observations among sensors. We then corrected the monthly signal differences between the C-band and the scaled Ku-band signals, by modelling the signal differences from climatic variables (i.e., monthly precipitation, skin temperature, and snow depth) using decision tree regression. The quality of the merged radar signal was assessed by computing the Pearson r, Root Mean Square Error (RMSE), and relative RMSE (rRMSE) between the C-band and the corrected Ku-band signals in the overlapping years (1999–2001 and 2007–2009). We obtained high Pearson r values and low RMSE values at both the regional (r ≥ 0.93, RMSE ≤ 0.16, rRMSE ≤0.37) and pixel levels (median r across pixels ≥ 0.80, median RMSE ≤ 0.38, median rRMSE ≤ 0.64), suggesting high accuracy for the data merging procedure. The merged radar signal was then validated with a continuous ERS-2 data set ...
    • الرقم المعرف:
      10.5194/essd-2022-264
    • الدخول الالكتروني :
      https://univ-eiffel.hal.science/hal-04428638
      https://univ-eiffel.hal.science/hal-04428638v1/document
      https://univ-eiffel.hal.science/hal-04428638v1/file/essd-2022-264.pdf
      https://doi.org/10.5194/essd-2022-264
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.3A80A0E3