Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Enhancing Breast Cancer Recognition in Histopathological Imaging Using Fine-Tuned CNN

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • المؤلفون: Darma, I Wayan Agus Surya; Sutramiani, Ni Putu
  • المصدر:
    Jurnal Ilmiah Merpati (Menara Penelitian Akademika Teknologi Informasi); Vol 12 No 3 (2024): Vol. 12, No. 3, December 2024; 169-180 ; 2685-2411 ; 2252-3006 ; 10.24843/JIM.2024.v12.i03
  • نوع التسجيلة:
    article in journal/newspaper
  • اللغة:
    English
  • معلومة اضافية
    • بيانات النشر:
      Lembaga Penelitian dan Pengabdian kepada Masyarakat Universitas Udayana
    • الموضوع:
      2024
    • Collection:
      E-Journal Universitas Udayana
    • نبذة مختصرة :
      Global Cancer Statistics reports that of the 2.3 million cases of breast cancer worldwide, 600,000 result in death. Factors contributing to breast cancer in women include both genetic and lifestyle influences. One method for recognizing breast cancer is through histopathology images. Recently, deep learning has gained significant attention in machine learning due to its powerful capabilities in modeling complex data, such as images. In this study, we classify breast cancer by training a Convolutional Neural Network (CNN) model on a dataset of histopathology images annotated and validated by experts, containing two classes. We propose an optimization strategy for CNN models to enhance breast cancer recognition performance, applying a fine-tuning strategy to MobileNetV2 and InceptionResNetV2 to evaluate CNN performance in classifying breast cancer within histopathological images. The experimental results demonstrate that the model achieves optimal performance with an accuracy of 96.22%.
    • File Description:
      application/pdf
    • Relation:
      https://ojs.unud.ac.id/index.php/merpati/article/view/120305/57521; https://ojs.unud.ac.id/index.php/merpati/article/view/120305
    • الرقم المعرف:
      10.24843/JIM.2024.v12.i03.p04
    • الدخول الالكتروني :
      https://ojs.unud.ac.id/index.php/merpati/article/view/120305
      https://doi.org/10.24843/JIM.2024.v12.i03.p04
    • Rights:
      Copyright (c) 2024 Jurnal Ilmiah Merpati (Menara Penelitian Akademika Teknologi Informasi)
    • الرقم المعرف:
      edsbas.2EB0D943