Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Use of a Pre-Trained Neural Network for Automatic Classification of Arterial Doppler Flow Waveforms: A Proof of Concept

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Centre Hospitalier Universitaire de Rennes CHU Rennes = Rennes University Hospital Pontchaillou; CHU Caen Normandie – Centre Hospitalier Universitaire de Caen Normandie (CHU Caen Normandie); Normandie Université (NU)-Tumorothèque de Caen Basse-Normandie (TCBN); Centre d'Investigation Clinique Rennes (CIC); Université de Rennes (UR)-Centre Hospitalier Universitaire de Rennes CHU Rennes = Rennes University Hospital Pontchaillou -Institut National de la Santé et de la Recherche Médicale (INSERM); Laboratoire Mouvement Sport Santé (M2S); Université de Rennes (UR)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Structure Fédérative de Recherche en Biologie et Santé de Rennes (Biosit : Biologie - Santé - Innovation Technologique); This research received no external funding. The APC was funded by CHU Rennes.
    • بيانات النشر:
      CCSD
      MDPI
    • الموضوع:
      2021
    • Collection:
      Archive Ouverte de l'Université Rennes (HAL)
    • نبذة مختصرة :
      International audience ; Background: Arterial Doppler flow waveform analysis is a tool recommended for the management of lower extremity peripheral arterial disease (PAD). To standardize the waveform analysis, classifications have been proposed. Neural networks have shown a great ability to categorize data. The aim of the present study was to use an existing neural network to evaluate the potential for categorization of arterial Doppler flow waveforms according to a commonly used classification. Methods: The Pareto efficient ResNet-101 (ResNet-101) neural network was chosen to categorize 424 images of arterial Doppler flow waveforms according to the Simplified Saint-Bonnet classification. As a reference, the inter-operator variability between two trained vascular medicine physicians was also assessed. Accuracy was expressed in percentage, and agreement was assessed using Cohen's Kappa coefficient. Results: After retraining, ResNet-101 was able to categorize waveforms with 83.7 and PLUSMN; 4.6% accuracy resulting in a kappa coefficient of 0.79 (0.75-0.83) (CI 95%), compared with a kappa coefficient of 0.83 (0.79-0.87) (CI 95%) between the two physicians. Conclusion: This study suggests that the use of transfer learning on a pre-trained neural network is feasible for the automatic classification of images of arterial Doppler flow waveforms.
    • Relation:
      info:eu-repo/semantics/altIdentifier/pmid/34640497; PUBMED: 34640497
    • الرقم المعرف:
      10.3390/jcm10194479
    • الدخول الالكتروني :
      https://hal.science/hal-03413306
      https://hal.science/hal-03413306v1/document
      https://hal.science/hal-03413306v1/file/jcm-10-04479-v2.pdf
      https://doi.org/10.3390/jcm10194479
    • Rights:
      http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.2A35D797