Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Pan tropical biomass equations for Mexico's dry forests ; Ecuaciones de la cubierta forestal para los bosques secos de México

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias Agrarias
    • الموضوع:
      2014
    • Collection:
      Universidad Nacional de Colombia: Portal de Revistas UN
    • نبذة مختصرة :
      This study reports a set of robust regional M-tree allometric equations for Mexico's tropical dry forests and their application to a forest inventory dataset for the States of Durango and Sinaloa, Mexico. Calculated M data from 15 reported equations were fitted, applied and validated for regional and global models. Proposed theoretical models, empirically derived equations, as well as global and local reported equations were fitted and applied to calculated M-tree data using wood specific gravity, diameter at breast height, and top height as exogenous variables. Empirically-derived, computer-based equations assessed the M-tree evaluations slightly better than the theoretical, the global and the local models. However, the theoretical models projected compatible M-tree values and deserve further attention once wood specific gravity data are collected in the field. Using the best fit equation, mean M plot density values of 30, 41 and 35 Mg ha-1 were estimated from 57 plots (1,600 m2 each), 217 plots (1,000 m2 each) and 166 plots (1,000 m2 each) in the tropical dry forests of the States of Durango, Tiniaquis and Vado Hondo (Sinaloa), respectively. The large sample size, the richness of the tested allometric models, the economic and ecological importance of this data-source, and the spatial coverage of these equations made this dataset uniquely useful for biomass, charcoal, and other bio-energy estimations, as well as for understanding the inherent heterogeneity of the stand-structure in dynamic tropical forest environments. ; Este estudio reporta un conjunto de ecuaciones alométricas robustas para la evaluación de M de los bosques tropicales secos de México y su aplicación al inventario forestal para los estados de Durango y Sinaloa, México. Los datos calculados de M de 15 ecuaciones reportadas se ajustaron, aplicaron y validaron ecuaciones regionales y mundiales. Los modelos teóricos propuestos, las ecuaciones empíricamente derivadas, así como también las ecuaciones derivadas local y mundialmente se ajustaron y ...
    • File Description:
      application/pdf; text/html
    • Relation:
      https://revistas.unal.edu.co/index.php/agrocol/article/view/45627/50126; https://revistas.unal.edu.co/index.php/agrocol/article/view/45627/52511; Brandeis, T.J., M. Delaney, B.R. Parresol, and L. Royer. 2006. Development of equations for predicting Puerto Rican subtropical dry forest biomass and volume. Forest Ecol. Manag. 233, 133-142. Doi:10.1016/j.foreco.2006.06.012; Brown, S. 1997. Estimating biomass and biomass change of tropical forests. FAO Forestry Paper No. 134. FAO, Rome.; Brown, S., A.J.R. Gillespie, and A.E. Lugo. 1989. Biomass estimation methods for tropical forests with applications to forest inventory data. Forest Sci. 35, 881-902.; Cairns, M.A., S. Brown, E.H. Helmer, and G.A. Baumgardner. 1997. Root biomass allocation in the world' s upland forests. Oecologia 111, 1-11. Doi:10.1007/s004420050201; Cairns, M.A., P.K. Haggerty, R. Alvarez, B.H.J. De Jong, and I. Olmsted. 2000. Tropical Mexico's recent land-use change: a region's contribution to the global carbon cycle. Ecol. Appl. 10, 1426-1441. Oi: 10.1890/1051-0761(2000)010[1426:TMSRLU]2.0.CO;2; Cairns, M.A., I. Olmsted, J. Granados, and J. Argaez. 2003. Composition and aboveground tree biomass of a dry semi-evergreen forest on Mexico's Yucatan Peninsula. Forest Ecol. Manag. 186, 125-132. Doi:10.1016/S0378-1127(03)00229-9; Canadell, J.G. and M.R. Raupach. 2008. Managing forests for climate change mitigation. Science 320, 1456-1457. Doi:10.1126/science.1155458; Chave, J., C. Andalo, S. Brown, M.A. Cairns, J.Q. Chambers, D. Eamus, H. Fölster, F. Fromard, N. Higuchi, T. Kira, J.-P. Lescure, B.W. Nelson, H. Ogawa, H. Puig, B. Riéra, and T. Yamakura. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145, 87-99. Doi:10.1007/s00442-005-0100-x; Chave, J., H.C. Muller-Landau, T.R. Baker, T.A. Easdale, H.T. Steege and C.O. Webb. 2006. Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecol. Appl. 16, 2356-2367.; Gómez-Díaz, J.D., J.D. Etchevers, A.I. Monterroso, K. Paustian, C. Hidalgo, J.A. Tinoco-Rueda, and E. Guizar. 2011. Above and belowground biomass and carbon stocks of a tropical dry forest of Central Mexico. Journal of Tropical Ecology. Submitted.; Houghton, RA. 2005. Aboveground forest biomass and the global carbon balance. Global Change Biol. 11, 945-958. Doi:10.1111/j.1365-2486.2005.00955.x; Jenkins, J.C., D.C. Chojnacky, L.S. Heath, and R.A. Birdsey. 2003. National-scale biomass estimators for United States trees species. Forest Sci. 49, 12-35.; Ketterings, Q.M., R. Coe, M. Van Noordwijk, Y. Ambagau, and C.A. Palm. 2001. Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. Forest Ecol. Manag. 146, 199-209. Doi:10.1016/S0378-1127(00)00460-6; Martínez-Yrizar, A., J.M. Maass, L.A. Pérez-Jiménez, and J. Sarukhán. 1996. Net primary productivity of a tropical deciduous forest ecosystem in western Mexico. J. Trop. Ecol. 12, 169-175. Doi:10.1017/S026646740000938X; McKendry, P. 2002. Energy production from biomass (part 1): overview of biomass. Bioresour. Technol. 83, 37-46. Doi:10.1016/S0960-8524(01)00118-3; Mokany, K., R.J. Raison, and S.A. Prokushkin. 2006. Critical analysis of root:shoot ratios in terrestrial biomes. Global Change Biol. 12, 84-96. Doi:10.1111/j.1365-2486.2005.001043.x; Montagu, K.D., K. Düttmer, C.V.M. Barton, and A.L. Cowei. 2005. Developing general allometric relationships for regional estimates of carbon sequestration-an example using Eucalyptus pilularis from seven contrasting sites. Forest Ecol. Manag. 204, 115-129. Doi:10.1016/j.foreco.2004.09.003; Návar, J. 2009a. Biomass component equations for Latin American species and groups of species. Ann. Forest Sci. 66, 208. Doi:10.1051/forest/2009001; Návar C., J.J. 2009b. Allometric equations and expansion factors for tropical dry trees of eastern Sinaloa, Mexico. Trop. Subtrop. Agroecosyst. 10, 45-52.; Návar, J. 2010. Measurement and assessment methods of forest aboveground biomass: a literature review and the challenges ahead. pp. 27-64. In: Momba, M. and F. Bux (eds.). Biomass. InTech, Rijeka, Croatia.; Palacio-Prieto, J.L., G. Bocco, A. Velázquez, J.F. Mas, F. Takaki- Takaki, A. Victoria, L. Luna-González, G. Gómez-Rodríguez, J. López-García, M. Palma M., I. Trejo-Vázquez, A. Peralta H., J. Prado-Molina, A. Rodríguez-Aguilar, R. Mayorga-Saucedo, and F. González M. 2000. La condición actual de los recursos forestales en México: resultados del Inventario Forestal Nacional 2000. Invest. Geográf. 43, 183-200.; Parolin, P. 2002. Radial gradients in wood specific gravity in trees of Central Amazonian floodplains. IAWA J. 23, 449-457. Doi:10.1163/22941932-90000314; Ter-Mikaelian, M.T. and M.D. Korzukhin. 1997. Biomass equations for sixty-five North American tree species. Forest Ecol. Manag. 97, 1-24. Doi:10.1016/S0378-1127(97)00019-4; West, G.B., J.H. Brown, and B.J. Enquist. 1999. A general model for the structure and allometry of plant vascular systems. Nature 400, 664-667. Doi:10.1038/23251; Williams, R.J., A. Zerihum, K.D. Montagu, M. Hoffman, L.B. Hutley, and X. Chen. 2005. Allometry for estimating aboveground tree biomass in tropical and subtropical eucalypt woodlands: towards general predictive equations. Aust. J. Bot. 53, 607-619. Doi:10.1071/BT04149; Xiang, W., S. Liu, X. Deng, A. Shen, X. Lei, D. Tian, M. Zhao, and C. Peng. 2011. General allometric equations and biomass allocation of Pinus massoniana trees on a regional scale in southern China. Ecol. Res. 26, 697-711. Doi:10.1007/s11284-011-0829-0; Youkhana, A.H. and T.W. Idol. 2011. Allometric models for predicting above- and belowground biomass of Leucaena-KX2 in a shaded coffee agroecosystem in Hawaii. Agroforest. Syst. 83, 331-345. Doi:10.1007/s10457-011-9403-6; https://revistas.unal.edu.co/index.php/agrocol/article/view/45627
    • الدخول الالكتروني :
      https://revistas.unal.edu.co/index.php/agrocol/article/view/45627
    • Rights:
      Derechos de autor 2014 Agronomía Colombiana ; https://creativecommons.org/licenses/by-nc-sa/4.0
    • الرقم المعرف:
      edsbas.29CD17A4