Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Probabilistic Multi-Modal Data Fusion and Precision Coordination for Autonomous Mobile Systems Navigation : A Predictive and Collaborative Approach to Visual-Inertial Odometry in Distributed Sensor Networks using Edge Nodes ; Sannolikhetsbaserad fermodig datafusion och precision samordning för spårning av autonoma mobila system : En prediktiv och kant-samarbetande metod för visuell-inertial navigation i distribuerade sensornätverk

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      KTH, Skolan för elektroteknik och datavetenskap (EECS)
    • الموضوع:
      2023
    • Collection:
      Royal Inst. of Technology, Stockholm (KTH): Publication Database DiVA
    • نبذة مختصرة :
      This research proposes a novel approach for improving autonomous mobile system navigation in dynamic and potentially occluded environments. The research introduces a tracking framework that combines data from stationary sensing units and on-board sensors, addressing challenges of computational efficiency, reliability, and scalability. The work innovates by integrating spatially-distributed LiDAR and RGB-D Camera sensors, with the optional inclusion of on-board IMU-based dead-reckoning, forming a robust and efficient coordination framework for autonomous systems. Two key developments are achieved. Firstly, a point cloud object detection technique, "Generalized L-Shape Fitting”, is advanced, enhancing bounding box fitting over point cloud data. Secondly, a new estimation framework, the Distributed Edge Node Switching Filter (DENS-F), is established. The DENS-F optimizes resource utilization and coordination, while minimizing reliance on on-board computation. Furthermore, it incorporates a short-term predictive feature, thanks to the Adaptive-Constant Acceleration motion model, which utilizes behaviour-based control inputs. The findings indicate that the DENS-F substantially improves accuracy and computational efficiency compared to the Kalman Consensus Filter (KCF), particularly when additional inertial data is provided by the vehicle. The type of sensor deployed and the consistency of the vehicle's path are also found to significantly influence the system's performance. The research opens new viewpoints for enhancing autonomous vehicle tracking, highlighting opportunities for future exploration in prediction models, sensor selection, and precision coordination. ; Denna forskning föreslår en ny metod för att förbättra autonom mobil systemsnavigering i dynamiska och potentiellt skymda miljöer. Forskningen introducerar ett spårningsramverk som kombinerar data från stationära sensorenheter och ombordssensorer, vilket hanterar utmaningar med beräkningsefektivitet, tillförlitlighet och skalbarhet. Arbetet innoverar ...
    • File Description:
      application/pdf
    • Relation:
      TRITA-EECS-EX; 2023:766
    • الدخول الالكتروني :
      http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-340705
    • Rights:
      info:eu-repo/semantics/openAccess
    • الرقم المعرف:
      edsbas.277CD973