Contributors: Brohard, Yannick; Territoires, Environnement, Télédétection et Information Spatiale (UMR TETIS); Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE); Ecologie fonctionnelle et biogéochimie des sols et des agro-écosystèmes (UMR Eco&Sols); Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro - Montpellier SupAgro; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro); Département Performances des systèmes de production et de transformation tropicaux (Cirad-PERSYST); Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad); Botanique et Modélisation de l'Architecture des Plantes et des Végétations (UMR AMAP); Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD Occitanie )-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE); Institut de Recherche pour le Développement (IRD); TOSCA program grant of the French Space Agency (CNES) (HyperTropik/HyperBIO projects); ANR-17-CE32-0001,BioCop,Suivi de la biodiversité tropicale avec les satellites Sentinel-2 du programme Copernicus(2017); ANR-10-LABX-0025,CEBA,CEnter of the study of Biodiversity in Amazonia(2010)
نبذة مختصرة : Optical remote sensing can contribute to biodiversity monitoring and species composition mapping in tropical forests. Inferring ecological information from canopy reflectance is complex and data availability suitable to such a task is limiting, which makes simulation tools particularly important in this context. We explored the capability of the 3D radiative transfer model DART to simulate top of canopy reflectance acquired with airborne imaging spectroscopy in complex tropical forest, and to reproduce spectral dissimilarity within and among species, as well as species discrimination based on spectral information. We focused on two factors contributing to these canopy reflectance properties: the horizontal variability in leaf optical properties (LOP) and the fraction of non-photosynthetic vegetation (NPVf). The variability in LOP was induced by changes in leaf pigment content, and defined for each pixel based on a hybrid approach combining radiative transfer modeling and spectral indices. The influence of LOP variability on simulated reflectance was tested by considering variability at species, individual tree crown and pixel level. We incorporated NPVf into simulations following two approaches, either considering NPVf as a part of wood area density in each voxel or using leaf brown pigments. We validated the different scenarios by comparing simulated scenes with experimental airborne imaging spectroscopy using statistical metrics, spectral dissimilarity (within crowns, within species, and among species dissimilarity) and supervised classification for species discrimination. The simulation of NPVf based on leaf brown pigments resulted in the closest match between measured and simulated canopy reflectance. The definition of LOP at pixel level resulted in conservation of the spectral dissimilarity and expected performances for species discrimination. Our simulation framework could contribute to better understand performances for species discrimination and relationship between spectral variations and taxonomic and functional dimensions of biodiversity.
No Comments.