Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Using deep learning to integrate paleoclimate and global biogeochemistry over the Phanerozoic Eon

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      POTHIER, Nathalie; Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE); École normale supérieure de Lyon (ENS de Lyon); Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS); Géosciences Environnement Toulouse (GET); Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3); Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP); Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS); Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement (CEREGE); Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE); University of Leeds
    • بيانات النشر:
      Copernicus GmbH, 2024.
    • الموضوع:
      2024
    • نبذة مختصرة :
      Databases of 3D paleoclimate model simulations are increasingly used within global biogeochemical models for the Phanerozoic Eon. This improves the accuracy of the surface processes within the biogeochemical models, but the approach is limited by the availability of large numbers of paleoclimate simulations at different pCO2 levels and for different continental configurations. In this paper we apply the Frame Interpolation for Large Motion (FILM) deep learning method to a set of Phanerozoic paleoclimate model simulations to upscale their time resolution from one model run every ∼25 million years to one model run every 1 million years (Myr). Testing the method on a 5 Myr time-resolution set of continental configurations and paleoclimates confirms the accuracy of our approach when reconstructing intermediate frames from configurations separated by up to 40 Myr. We then apply the method to upscale the paleoclimate data structure in the SCION climate-biogeochemical model. The interpolated surface temperature and runoff are reasonable and present a logical progression between the original key frames. When updated to use the high-time-resolution climate data structure, the SCION model predicts climate shifts that were not present in the original model outputs due to its previous use of widely spaced datasets and simple linear interpolation. We conclude that a time resolution of ∼10 Myr in Phanerozoic paleoclimate simulations is likely sufficient for investigating the long-term carbon cycle and that deep learning methods may be critical in attaining this time resolution at reasonable computational expense, as well as for developing new fully continuous methods in which 3D continental processes are able to translate over a moving continental surface in deep time. However, the efficacy of deep learning methods in interpolating runoff data, compared to that of paleogeography and temperature, is diminished by the heterogeneous distribution of runoff. Consequently, interpolated climates must be confirmed by running a paleoclimate model if scientific conclusions are to be based directly on them.
    • File Description:
      application/pdf
    • ISSN:
      1991-9603
    • الرقم المعرف:
      10.5194/gmd-17-5413-2024
    • Rights:
      CC BY
    • الرقم المعرف:
      edsair.doi.dedup.....3e0f80c20c3af04b4cb4cec87aaa7e0d