Item request has been placed!
×
Item request cannot be made.
×

Processing Request
Utilizing RNA-seq data in monotone iterative generalized linear model to elevate prior knowledge quality of the circRNA-miRNA-mRNA regulatory axis.
Item request has been placed!
×
Item request cannot be made.
×

Processing Request
- المؤلفون: Anuarbekov A;Anuarbekov A; Kléma J; Kléma J
- المصدر:
BMC bioinformatics [BMC Bioinformatics] 2025 May 27; Vol. 26 (1), pp. 139. Date of Electronic Publication: 2025 May 27.
- نوع النشر :
Journal Article
- اللغة:
English
- معلومة اضافية
- المصدر:
Publisher: BioMed Central Country of Publication: England NLM ID: 100965194 Publication Model: Electronic Cited Medium: Internet ISSN: 1471-2105 (Electronic) Linking ISSN: 14712105 NLM ISO Abbreviation: BMC Bioinformatics Subsets: MEDLINE
- بيانات النشر:
Original Publication: [London] : BioMed Central, 2000-
- الموضوع:
- نبذة مختصرة :
Competing Interests: Declarations. Ethics approval and consent to participate: Not applicable. Consent for publication: Not applicable. Competing interests: The authors declare no Competing interests.
Background: Current experimental data on RNA interactions remain limited, particularly for non-coding RNAs, many of which have only recently been discovered and operate within complex regulatory networks. Researchers often rely on in-silico interaction detection algorithms, such as TargetScan, which are based on biochemical sequence alignment. However, these algorithms have limited performance. RNA-seq expression data can provide valuable insights into regulatory networks, especially for understudied interactions such as circRNA-miRNA-mRNA. By integrating RNA-seq data with prior interaction networks obtained experimentally or through in-silico predictions, researchers can discover novel interactions, validate existing ones, and improve interaction prediction accuracy.
Results: This paper introduces Pi-GMIFS, an extension of the generalized monotone incremental forward stagewise (GMIFS) regression algorithm that incorporates prior knowledge. The algorithm first estimates prior response values through a prior-only regression, interpolates between these prior values and the original data, and then applies the GMIFS method. Our experimental results on circRNA-miRNA-mRNA regulatory interaction networks demonstrate that Pi-GMIFS consistently enhances precision and recall in RNA interaction prediction by leveraging implicit information from bulk RNA-seq expression data, outperforming the initial prior knowledge.
Conclusion: Pi-GMIFS is a robust algorithm for inferring acyclic interaction networks when the variable ordering is known. Its effectiveness was confirmed through extensive experimental validation. We proved that RNA-seq data of a representative size help infer previously unknown interactions available in TarBase v9 and improve the quality of circRNA disease annotation.
(© 2025. The Author(s).)
- References:
Nucleic Acids Res. 2002 Jan 1;30(1):207-10. (PMID: 11752295)
Nucleic Acids Res. 2014;42(17):e133. (PMID: 25063298)
Nat Biotechnol. 2021 Nov;39(11):1453-1465. (PMID: 34140680)
Methods Protoc. 2020 Dec 24;4(1):. (PMID: 33374478)
Genome Biol. 2020 Apr 28;21(1):101. (PMID: 32345360)
BMC Bioinformatics. 2013 Mar 09;14:91. (PMID: 23497356)
Nat Genet. 2013 Oct;45(10):1113-20. (PMID: 24071849)
Cells. 2020 Jun 28;9(7):. (PMID: 32605220)
Mol Ther Nucleic Acids. 2021 Nov 10;26:1291-1302. (PMID: 34853728)
Bioinformatics. 2009 Dec 1;25(23):3049-55. (PMID: 19789267)
Nucleic Acids Res. 2021 Jan 11;49(1):127-144. (PMID: 33305319)
Brief Bioinform. 2023 Jan 19;24(1):. (PMID: 36611256)
RNA Biol. 2016;13(1):34-42. (PMID: 26669964)
Bioinformatics. 2011 Sep 1;27(17):2406-13. (PMID: 21743061)
RNA. 2014 Nov;20(11):1666-70. (PMID: 25234927)
Biomed Res Int. 2017;2017:5936171. (PMID: 28717649)
J Stat Softw. 2010;33(1):1-22. (PMID: 20808728)
IEEE/ACM Trans Comput Biol Bioinform. 2024 Sep-Oct;21(5):1413-1422. (PMID: 38607720)
Mol Cell. 2015 May 21;58(4):586-97. (PMID: 26000844)
Cancer Genomics Proteomics. 2022 Mar-Apr;19(2):205-228. (PMID: 35181589)
IEEE/ACM Trans Comput Biol Bioinform. 2022 Nov-Dec;19(6):3530-3538. (PMID: 34506289)
Nucleic Acids Res. 2024 Jan 5;52(D1):D1193-D1200. (PMID: 37897359)
Nucleic Acids Res. 2024 Jan 5;52(D1):D304-D310. (PMID: 37986224)
Genome Biol. 2014;15(12):550. (PMID: 25516281)
Methods Mol Biol. 2006;342:129-38. (PMID: 16957372)
Front Genet. 2019 Jun 12;10:535. (PMID: 31249591)
BMC Bioinformatics. 2024 Oct 26;25(1):339. (PMID: 39462345)
IEEE/ACM Trans Comput Biol Bioinform. 2018 Nov-Dec;15(6):1774-1782. (PMID: 27392365)
Crit Rev Eukaryot Gene Expr. 2014;24(2):101-16. (PMID: 24940765)
IEEE J Biomed Health Inform. 2025 Feb 10;PP:. (PMID: 40031690)
PLoS Comput Biol. 2012;8(3):e1002444. (PMID: 22479173)
Nucleic Acids Res. 2023 Jan 6;51(D1):D1003-D1009. (PMID: 36243972)
BMC Bioinformatics. 2022 Sep 27;23(1):392. (PMID: 36167495)
Mol Oncol. 2023 Dec;17(12):2565-2583. (PMID: 37408496)
BMC Bioinformatics. 2009 Dec 10;10:408. (PMID: 20003267)
Bioinformatics. 2019 Jul 15;35(14):i596-i604. (PMID: 31510670)
J Am Stat Assoc. 2016;111(513):355-376. (PMID: 27217599)
Biom J. 2015 Sep;57(5):867-84. (PMID: 26059498)
F1000Res. 2016 Jun 20;5:1438. (PMID: 27508061)
BMC Bioinformatics. 2011 Mar 17;12:77. (PMID: 21414208)
Nat Rev Genet. 2009 Jan;10(1):57-63. (PMID: 19015660)
Bioinformatics. 2010 Jan 1;26(1):139-40. (PMID: 19910308)
PLoS One. 2015 Dec 30;10(12):e0145386. (PMID: 26716983)
PLoS One. 2023 Apr 13;18(4):e0283589. (PMID: 37053191)
Genome Biol. 2014 Feb 03;15(2):R29. (PMID: 24485249)
Nature. 2013 Mar 21;495(7441):333-8. (PMID: 23446348)
Nat Commun. 2018 Jan 18;9(1):284. (PMID: 29348443)
Trials. 2023 Sep 27;24(1):613. (PMID: 37752579)
Bioinform Biol Insights. 2020 Jan 31;14:1177932219899051. (PMID: 32076369)
Brief Bioinform. 2022 Jan 17;23(1):. (PMID: 34864877)
Genomics Proteomics Bioinformatics. 2022 Jun;20(3):435-445. (PMID: 34856391)
J Integr Bioinform. 2021 Mar 17;18(1):45-50. (PMID: 33725751)
Database (Oxford). 2023 Apr 25;2023:. (PMID: 37098414)
Nat Rev Genet. 2019 Nov;20(11):675-691. (PMID: 31395983)
Bioinformatics. 2021 Dec 22;38(1):164-172. (PMID: 34499096)
BMC Bioinformatics. 2018 Apr 11;19(1):127. (PMID: 29642837)
Bioessays. 2019 Apr;41(4):e1800169. (PMID: 30919506)
J Stat Softw. 2023;106:. (PMID: 37138589)
Sci Rep. 2018 Jul 20;8(1):11018. (PMID: 30030469)
PLoS One. 2019 Jan 8;14(1):e0209923. (PMID: 30620740)
Heliyon. 2024 Apr 16;10(8):e29344. (PMID: 38681584)
Genome Biol. 2003;5(1):R1. (PMID: 14709173)
Nucleic Acids Res. 2017 Jan 25;45(2):556-566. (PMID: 27899600)
Sci Rep. 2022 Jun 23;12(1):10618. (PMID: 35739186)
J Integr Bioinform. 2022 Apr 01;19(3):. (PMID: 35357793)
Front Cell Dev Biol. 2014 Aug 19;2:38. (PMID: 25364745)
EMBO J. 2019 Aug 15;38(16):e100836. (PMID: 31343080)
Front Genet. 2019 Dec 20;10:1196. (PMID: 31921278)
Elife. 2015 Aug 12;4:. (PMID: 26267216)
- Grant Information:
SGS23/184/OHK3/3T/13 Grant Agency of the Czech Technical University in Prague; e-INFRA CZ project (ID:90254) Ministry of Education, Youth and Sports of the Czech Republic
- Contributed Indexing:
Keywords: Bayesian network; Circular RNA; Functional annotation; Penalized regression; Structure inference
- الرقم المعرف:
0 (RNA, Circular)
0 (RNA, Messenger)
0 (MicroRNAs)
- الموضوع:
Date Created: 20250527 Date Completed: 20250528 Latest Revision: 20250531
- الموضوع:
20250531
- الرقم المعرف:
PMC12117772
- الرقم المعرف:
10.1186/s12859-025-06161-w
- الرقم المعرف:
40426030
No Comments.