Item request has been placed!
×
Item request cannot be made.
×

Processing Request
Delta dual‑region DCE-MRI radiomics from breast masses predicts axillary lymph node response after neoadjuvant therapy for breast cancer.
Item request has been placed!
×
Item request cannot be made.
×

Processing Request
- معلومة اضافية
- المصدر:
Publisher: BioMed Central Country of Publication: England NLM ID: 100967800 Publication Model: Electronic Cited Medium: Internet ISSN: 1471-2407 (Electronic) Linking ISSN: 14712407 NLM ISO Abbreviation: BMC Cancer Subsets: MEDLINE
- بيانات النشر:
Original Publication: London : BioMed Central, [2001-
- الموضوع:
- نبذة مختصرة :
Competing Interests: Declarations. Ethics approval and consent to participate: This study was performed in line with the principles of the Declaration of Helsinki and approved by the institutional review board of Jiangxi Cancer Hospital (NO. 2023ky100). Informed consent from participants was exempted due to retrospective study. Consent for publication: Not applicable. Competing interests: The authors declare no competing interests.
Objectives: This study was designed to develop and validate models based on delta intratumoral and peritumoral radiomics features from breast masses on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for the prediction of axillary lymph node (ALN) pathological complete response (pCR) after neoadjuvant therapy (NAT) in patients with breast cancer (BC).
Methods: We retrospectively collected data from 187 BC patients with ALN metastases. Radiomics features were extracted from the intratumoral and 3 mm-peritumoral regions on DCE-MRI at baseline and after the 2nd course of NAT to calculate delta intratumoral and peritumoral radiomics features, respectively. After feature selection, the delta intratumoral radiomics (DIR) model and delta peritumoral radiomics (DPR) model were built using the retained features. An ultrasound model was constructed on the basis of preoperative axillary ultrasound results. All variables were screened by univariate and multivariate logistic regression to construct the combined model. The above models were evaluated and compared.
Results: In the validation set, the ultrasound model had the lowest AUC, which was lower than those of the DIR, DPR and combined models (0.627 vs 0.825, 0.687, 0.846, respectively). The combined model constructed by delta dual-region radiomics and ultrasound dianogsis was significantly better than the ultrasound model in terms of the Delong test and integrated discrimination improvement (all p < 0.05).
Conclusions: Delta intratumoral and peritumoral radiomics based on DCE-MRI have the potential to predict ALN status after NAT. The combined model based on delta dual-region radiomics of breast mass can accurately diagnose ALN-pCR and provide assistance in the selection of axillary surgical approaches for patients.
(© 2025. The Author(s).)
- References:
N Biotechnol. 2023 Nov 25;77:1-11. (PMID: 37329982)
Eur J Radiol Open. 2024 Apr 24;12:100561. (PMID: 38699592)
JAMA Netw Open. 2020 Sep 1;3(9):e2015927. (PMID: 32910196)
Acad Radiol. 2023 Aug;30(8):1638-1647. (PMID: 36564256)
Insights Imaging. 2023 Apr 15;14(1):65. (PMID: 37060378)
J Clin Oncol. 2007 Aug 20;25(24):3657-63. (PMID: 17485711)
Acad Radiol. 2023 Sep;30 Suppl 2:S38-S49. (PMID: 37169624)
Oncologist. 2023 Apr 6;28(4):e183-e190. (PMID: 36802345)
Br J Radiol. 2022 Oct 1;95(1139):20220533. (PMID: 36000676)
Cancer Biol Med. 2022 Jun 29;19(6):. (PMID: 35765123)
Magn Reson Imaging. 2012 Nov;30(9):1323-41. (PMID: 22770690)
Gland Surg. 2020 Oct;9(5):1214-1226. (PMID: 33224796)
Ann Surg Oncol. 2022 Mar;29(3):1489-1492. (PMID: 34989940)
Eur Radiol. 2005 May;15(5):1044-50. (PMID: 15856254)
Breast Cancer Res. 2017 May 18;19(1):57. (PMID: 28521821)
Radiol Med. 2021 Dec;126(12):1571-1583. (PMID: 34865190)
Ann Oncol. 2020 Jun;31(6):760-768. (PMID: 32240794)
Front Oncol. 2022 Feb 07;12:748008. (PMID: 35198437)
World J Surg Oncol. 2023 Sep 16;21(1):292. (PMID: 37715188)
Front Oncol. 2023 Oct 03;13:1169010. (PMID: 37854685)
Cancer Imaging. 2022 Apr 4;22(1):17. (PMID: 35379339)
Br J Surg. 2022 Aug 16;109(9):857-863. (PMID: 35766257)
Radiol Med. 2022 Jan;127(1):39-56. (PMID: 34704213)
Ann Surg. 2021 Apr 1;273(4):694-700. (PMID: 33201095)
Cancer. 2023 Feb 1;129(3):356-366. (PMID: 36401611)
Int J Mol Sci. 2023 Jan 22;24(3):. (PMID: 36768535)
Gastroenterol Rep (Oxf). 2023 Jan 04;7:goac080. (PMID: 36627981)
J Natl Compr Canc Netw. 2021 May 01;19(5):484-493. (PMID: 34794122)
J Magn Reson Imaging. 2020 Sep;52(3):885-896. (PMID: 32096586)
Eur Radiol. 2022 Jan;32(1):639-649. (PMID: 34189600)
Clin Cancer Res. 2019 Jun 15;25(12):3538-3547. (PMID: 30842125)
Biomed Eng Online. 2021 Jun 28;20(1):63. (PMID: 34183038)
Eur J Radiol Open. 2023 Jul 18;11:100511. (PMID: 37520768)
Radiographics. 2021 Sep-Oct;41(5):1283-1299. (PMID: 34469221)
Cureus. 2024 Oct 26;16(10):e72412. (PMID: 39588452)
Eur Radiol. 2021 Jan;31(1):411-422. (PMID: 32749583)
Cancer Imaging. 2020 Sep 15;20(1):65. (PMID: 32933585)
JAMA Netw Open. 2019 Apr 5;2(4):e192561. (PMID: 31002322)
BMC Cancer. 2023 Jan 5;23(1):15. (PMID: 36604679)
JAMA Netw Open. 2020 Dec 1;3(12):e2028086. (PMID: 33289845)
EBioMedicine. 2021 Jul;69:103460. (PMID: 34233259)
- Grant Information:
GJJ2203556 Science and Technology Research Project of Jiangxi Provincial Department of Education; KFJJ2023YB16 the Open Research Fund of Jiangxi Cancer Hospital & Institute; WCDJ2024QH03 the "Five-level Progressive" talent cultivation project of Jiangxi Cancer Hospital & Institute; BSQDJ2024007 Start-up Fund for Doctoral Research of Jiangxi Cancer Hospital; 202510520 Science and Technology Planning Project of Jiangxi Provincial Health Commission; 202410059 Science and Technology Planning Project of Jiangxi Provincial Health Commission
- Contributed Indexing:
Keywords: Breast cancer; Magnetic resonance imaging; Neoadjuvant therapy; Radiomics
- الرقم المعرف:
0 (Contrast Media)
- الموضوع:
Date Created: 20250214 Date Completed: 20250215 Latest Revision: 20250218
- الموضوع:
20250218
- الرقم المعرف:
PMC11827315
- الرقم المعرف:
10.1186/s12885-025-13678-z
- الرقم المعرف:
39953506
No Comments.