Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Oxidative stress-driven enhanced iron production and scavenging through Ferroportin reorientation worsens anemia in antimony-resistant Leishmania donovani infection.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Public Library of Science Country of Publication: United States NLM ID: 101238921 Publication Model: eCollection Cited Medium: Internet ISSN: 1553-7374 (Electronic) Linking ISSN: 15537366 NLM ISO Abbreviation: PLoS Pathog Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: San Francisco, CA : Public Library of Science, c2005-
    • الموضوع:
    • نبذة مختصرة :
      Competing Interests: The authors have declared that no competing interests exist.
      Despite the withdrawal of pentavalent-antimonials in treating Visceral leishmaniasis from India, recent clinical isolates of Leishmania donovani (LD) exhibit unresponsiveness towards pentavalent-antimony (LD-R). This antimony-unresponsiveness points towards a genetic adaptation that underpins LD-R's evolutionary persistence and dominance over sensitive counterparts (LD-S). This study highlights how LD evolutionarily tackled antimony exposure and gained increased potential of scavenging host-iron within its parasitophorous vacuoles (PV) to support its aggressive proliferation. Even though anti-leishmanial activity of pentavalent antimonials relies on triggering oxidative outburst, LD-R exhibits a surprising strategy of promoting reactive oxygen species (ROS) generation in infected macrophages. An inherent metabolic shift from glycolysis to Pentose Phosphate shunt allows LD-R to withstand elevated ROS by sustaining heightened levels of NADPH. Elevated ROS levels on the other hand trigger excess iron production, and LD-R capitalizes on this surplus iron by selectively reshuffling macrophage-surface iron exporter, Ferroportin, around its PV thereby gaining a survival edge as a heme-auxotroph. Higher iron utilization by LD-R leads to subsequent iron insufficiency, compensated by increased erythrophagocytosis through the breakdown of SIRPα-CD47 surveillance, orchestrated by a complex interplay of two proteases, Furin and ADAM10. Understanding these mechanisms is crucial for managing LD-R-infections and their associated complications like severe anemia, and may also provide valuable mechanistic insights into understanding drug unresponsiveness developed in other intracellular pathogens that rely on host iron.
      (Copyright: © 2025 Ghosh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
    • References:
      Nat Biotechnol. 2012 Oct;30(10):918-20. (PMID: 23051804)
      Cell Host Microbe. 2020 Mar 11;27(3):454-466.e8. (PMID: 32075740)
      Cell Microbiol. 2008 Feb;10(2):293-300. (PMID: 18070118)
      Oxid Med Cell Longev. 2020 Dec 10;2020:8867701. (PMID: 33376582)
      Ann Trop Med Parasitol. 1986 Jun;80(3):317-23. (PMID: 3026261)
      Mol Biochem Parasitol. 2004 Jan;133(1):37-43. (PMID: 14668010)
      J Cell Mol Med. 2008 Sep-Oct;12(5A):1548-50. (PMID: 18466351)
      Biomed Pharmacother. 2024 Apr;173:116299. (PMID: 38401525)
      FASEB J. 2015 May;29(5):2081-98. (PMID: 25690656)
      Int J Parasitol. 2003 Feb;33(2):153-62. (PMID: 12633653)
      Clin Transl Immunology. 2019 Aug 05;8(8):e1073. (PMID: 31406574)
      Parasitology. 2005;130 Suppl:S27-35. (PMID: 16281989)
      PLoS Pathog. 2020 Jul 21;16(7):e1008599. (PMID: 32692767)
      J Clin Invest. 2012 Jul;122(7):2352-4. (PMID: 22728929)
      Front Cell Infect Microbiol. 2012 Sep 19;2:121. (PMID: 23050244)
      Parasitol Open. 2018;4:. (PMID: 31093331)
      J Trop Pediatr. 2007 Aug;53(4):284-6. (PMID: 17483492)
      Cell Microbiol. 2020 Dec;22(12):e13253. (PMID: 32827218)
      PLoS Negl Trop Dis. 2019 Nov 18;13(11):e0007816. (PMID: 31738750)
      Methods Mol Biol. 2019;1978:301-321. (PMID: 31119671)
      J Biol Chem. 2011 Jul 1;286(26):23266-79. (PMID: 21558274)
      mSphere. 2018 Apr 18;3(2):. (PMID: 29669889)
      Cell Microbiol. 2006 Dec;8(12):1922-31. (PMID: 16848789)
      Anal Biochem. 2004 Aug 15;331(2):370-5. (PMID: 15265744)
      Neuron. 2013 Oct 16;80(2):250-3. (PMID: 24139026)
      Proc Natl Acad Sci U S A. 2013 Feb 12;110(7):E575-82. (PMID: 23341611)
      Genome Biol. 2014;15(12):550. (PMID: 25516281)
      Chem Biol Interact. 2018 Oct 1;294:167-177. (PMID: 30170107)
      J Lipid Res. 2012 Dec;53(12):2560-72. (PMID: 23060454)
      J Immunol. 2015 Sep 15;195(6):2731-42. (PMID: 26283478)
      Biomed Res. 2017;38(6):343-350. (PMID: 29225212)
      Trends Parasitol. 2020 Mar;36(3):279-289. (PMID: 32005611)
      Cell Microbiol. 2018 Jul;20(7):e12834. (PMID: 29470856)
      Parasitol Res. 2017 Feb;116(2):457-464. (PMID: 27822583)
      Methods Cell Biol. 1994;45:261-76. (PMID: 7707990)
      J Immunol. 2005 Sep 1;175(5):3214-24. (PMID: 16116212)
      Sci Rep. 2015 Dec 17;5:18302. (PMID: 26673780)
      Cell Microbiol. 2009 Jan;11(1):83-94. (PMID: 18823384)
      J Clin Invest. 2012 Jul;122(7):2531-42. (PMID: 22728935)
      PLoS One. 2013;8(3):e59509. (PMID: 23533629)
      Antimicrob Agents Chemother. 2017 May 24;61(6):. (PMID: 28320726)
      Oncotarget. 2016 Aug 9;7(32):50814-50815. (PMID: 27449104)
      Genome Res. 2011 Dec;21(12):2143-56. (PMID: 22038251)
      Pathogens. 2023 Apr 13;12(4):. (PMID: 37111479)
      PLoS One. 2011;6(8):e23120. (PMID: 21829701)
      J Biochem. 2023 Dec 20;175(1):17-24. (PMID: 37830941)
      PLoS Negl Trop Dis. 2016 Mar 04;10(3):e0004505. (PMID: 26942577)
      Antimicrob Agents Chemother. 2000 Sep;44(9):2406-10. (PMID: 10952587)
      Nat Genet. 2003 Jul;34(3):267-73. (PMID: 12808457)
      PLoS One. 2010 Aug 17;5(8):e12211. (PMID: 20808916)
      J Biomed Biotechnol. 2010;2010:109189. (PMID: 20396387)
      Cytokine. 2021 Sep;145:155300. (PMID: 32978033)
      PLoS One. 2016 Feb 03;11(2):e0148084. (PMID: 26840253)
      Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50. (PMID: 16199517)
      PLoS Negl Trop Dis. 2020 Feb 5;14(2):e0007991. (PMID: 32023254)
      Infect Immun. 2021 Jun 16;89(7):e0000921. (PMID: 33875473)
      Biochem J. 2007 Apr 15;403(2):261-6. (PMID: 17233627)
      Antioxid Redox Signal. 2018 Jan 20;28(3):167-179. (PMID: 28497978)
      Parasitology. 2011 Sep;138(11):1392-9. (PMID: 21819638)
      Int J Parasitol. 2011 Nov;41(13-14):1311-21. (PMID: 21920365)
      Curr Opin Microbiol. 2013 Dec;16(6):716-21. (PMID: 23962817)
      Front Cell Infect Microbiol. 2021 Nov 29;11:768830. (PMID: 34912730)
      Infect Immun. 2016 Jun 23;84(7):2002-2011. (PMID: 27091932)
      Parasitology. 2022 Jul;149(8):1085-1093. (PMID: 35535469)
      Front Immunol. 2017 Feb 02;8:73. (PMID: 28210260)
      PLoS Pathog. 2010 Oct 14;6(10):e1001148. (PMID: 20976196)
      Nat Commun. 2018 May 29;9(1):2091. (PMID: 29844422)
      J Biol Chem. 2015 Dec 25;290(52):31113-25. (PMID: 26534964)
      J Biol Chem. 2022 Dec;298(12):102646. (PMID: 36309090)
      Anal Bioanal Chem. 2010 Nov;398(5):2059-69. (PMID: 20824428)
      Front Immunol. 2019 May 24;10:1084. (PMID: 31178859)
      Liver Int. 2016 Mar;36(3):334-43. (PMID: 26189820)
    • الرقم المعرف:
      E1UOL152H7 (Iron)
      9IT35J3UV3 (Antimony)
      0 (Ferroportin)
      0 (Cation Transport Proteins)
      0 (Reactive Oxygen Species)
      0 (Antiprotozoal Agents)
    • الموضوع:
      Date Created: 20250131 Date Completed: 20250504 Latest Revision: 20250504
    • الموضوع:
      20250505
    • الرقم المعرف:
      PMC11785346
    • الرقم المعرف:
      10.1371/journal.ppat.1012858
    • الرقم المعرف:
      39888953