menu
Item request has been placed!
×
Item request cannot be made.
×

Evaluation of the antibacterial and antibiofilm effect of mycosynthesized silver and selenium nanoparticles and their synergistic effect with antibiotics on nosocomial bacteria.
Item request has been placed!
×
Item request cannot be made.
×

- المؤلفون: Fahmy NF;Fahmy NF; Abdel-Kareem MM; Abdel-Kareem MM; Ahmed HA; Ahmed HA; Helmy MZ; Helmy MZ; Mahmoud EA; Mahmoud EA
- المصدر:
Microbial cell factories [Microb Cell Fact] 2025 Jan 04; Vol. 24 (1), pp. 6. Date of Electronic Publication: 2025 Jan 04.- نوع النشر :
Journal Article- اللغة:
English - المصدر:
- معلومة اضافية
- المصدر: Publisher: BioMed Central Country of Publication: England NLM ID: 101139812 Publication Model: Electronic Cited Medium: Internet ISSN: 1475-2859 (Electronic) Linking ISSN: 14752859 NLM ISO Abbreviation: Microb Cell Fact Subsets: MEDLINE
- بيانات النشر: Original Publication: London : BioMed Central, [2002-
- الموضوع: Silver*/pharmacology ; Silver*/chemistry ; Biofilms*/drug effects ; Anti-Bacterial Agents*/pharmacology ; Anti-Bacterial Agents*/chemistry ; Selenium*/chemistry ; Selenium*/pharmacology ; Metal Nanoparticles*/chemistry ; Pseudomonas aeruginosa*/drug effects ; Methicillin-Resistant Staphylococcus aureus*/drug effects ; Microbial Sensitivity Tests* ; Drug Synergism*; Aspergillus/drug effects ; Humans ; Drug Resistance, Multiple, Bacterial/drug effects
- نبذة مختصرة : Competing Interests: Declarations. Ethics approval and consent to participate: Not applicable. Consent for publication: The authors agree to publish this paper in Microbial Cell Factories. Competing interests: The authors declare no competing interests.
Background: The healthcare sector faces a growing threat from the rise of highly resistant microorganisms, particularly Methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Pseudomonas aeruginosa (MDR P. aeruginosa). Facing the challenge of antibiotic resistance, nanoparticles have surfaced as promising substitutes for antimicrobial therapy. Recent studies showcase the effectiveness of various fungi species in nanoparticle synthesis. Mycosynthesized silver nanoparticles (AgNPs) and selenium nanoparticles (SeNPs) using Aspergillus carneus MAK 259 has been investigated and demonstrate antibacterial, antibiofilm and synergistic activities against (MRSA) and (MDR P. aeruginosa).
Results: In the current research, silver nanoparticles (AgNPs) and selenium nanoparticles (SeNPs) were produced extracellularly using A. carneus MAK 259 culture supernatants. Colour change, an initial evaluation of the production of AgNPs and SeNPs. Then, UV absorption peaks at 410 nm and 260 nm confirmed the production of AgNPs and SeNPs, respectively. AgNPs and SeNPs were dispersed consistently between 5‒26 nm and 20-77 nm in size, respectively using TEM. FT-IR analysis was used for assessing proteins bound to the produced nanoparticles. The crystallinity and stability of AgNPs and SeNPs was confirmed using X-ray diffraction analysis and zeta potential measurements, respectively. Antibacterial, antibiofilm and synergistic effects of both (NPs) with antibiotics against MRSA and MDR P. aeruginosa were tested by Agar well diffusion, tissue culture plate and disc diffusion method respectively. Both (NPs) inhibited the growth of P. aeruginosa more than S. aureus. But, SeNPs was stronger. AgNPs had stronger antibiofilm effect especially on biofilms producing S. aureus. as regard synergestic effects, Both (NPs) had higher synergestic effects in combination with cell wall inhibiting antibiotics against P. aeuroginosa While, on S. aureus with antibiotics that inhibit protein synthesis and affect metabolic pathways.
Conclusions: Our study demonstrated that the mycosynthesized SeNPs had remarkable antibacterial effect while, mycosynthesized AgNPs exhibited a considerable antibiofilm effect. Both NPs exhibited higher synergistic effect with antibiotics with different modes of action. This approach could potentially enhance the efficacy of existing antibiotics, providing a new weapon against drug-resistant bacteria where the described silver and selenium nanoparticles play a pivotal role in revolutionizing healthcare practices, offering innovative solutions to combat antibiotic resistance, and contributing to the development of advanced medical technologies.
(© 2025. The Author(s).) - References: Aslam B, Wang W, Arsha MI, Khurshid M, Muzammil S, Rasool MH, et al. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist. 2018;11:1645–58. (PMID: 10.2147/IDR.S173867303493226188119)
Ocheretyaner ER, Park TE. Delafloxacin: a novel fluoroquinolone with activity against methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa. Expert Rev Anti-Infect Ther. 2018;16(7):523–30. (PMID: 10.1080/14787210.2018.148972129911455)
Centers for Disease Control and Prevention. CDC. Antibiotic resistance threats in the United States. 2019.
Hirsch EB, Tam VH. Impact of multidrug-resistant Pseudomonas aeruginosa infection on patient outcomes. Expert Rev Pharmacoecon Outcomes Res. 2010;10(4):441–51. (PMID: 10.1586/erp.10.49207159203071543)
Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R. Alternative antimicrobial approach: nano-antimicrobial materials. Evid Based Complement Altern Med. 2015;2015:1–16. (PMID: 10.1155/2015/246012)
Alpaslan E, Geilich BM, Yazici H, Webster TJ. pH-controlled cerium oxide nanoparticle inhibition of both gram-positive and gram-negative bacteria growth. Sci Rep. 2017;7:45859. (PMID: 10.1038/srep45859283873445384081)
Kumar R, Sharma J, Sood J. Rayleigh–Bénard cell formation of green synthesized nano-particles of silver and selenium. Mater Today Proc. 2020;28:1781–7. (PMID: 10.1016/j.matpr.2020.05.191)
Thiruvengadam V, Bansod AV. Characterization of silver nanoparticles synthesized using chemical method and its antibacterial property. Biointerface Res Appl Chem. 2020;10:7257–64. (PMID: 10.33263/BRIAC106.72577264)
Shakibaie M, Forootanfar H, Golkari Y, Mohammadi-Khorsand T, Shakibaie MR. Anti-biofilm activity of biogenic selenium nanoparticles and selenium dioxide against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis. J Trace Elem Med Biol. 2015;29:235–41. (PMID: 10.1016/j.jtemb.2014.07.02025175509)
Elgorban AM, Al-Rahman AN, Sayed SR, et al. Antimicrobial activity and green synthesis of silver nanoparticles using Trichoderma viride. Biotechnol Biotechnol Equip. 2016;30:299–304. (PMID: 10.1080/13102818.2015.1133255)
Grasso G, Zane D, Dragone R. Precision microbial nanobiosynthesis: knowledge, issues, and potentiality for the in vivo tuning of microbial nanomaterials. In: Lateef A, Gueguim-Kana EB, Dasgupta N, Ranjan S, editors. Microbial nanobiotechnology. Materials horizons: from nature to nanomaterials. Singapore: Springer; 2021. https://doi.org/10.1007/978-981-33-4777-9_3 . (PMID: 10.1007/978-981-33-4777-9_3)
Hala AA, Abeer EA, Sally AEA. Extracellular myco-synthesis of nano-silver using the fermentable yeasts Pichia kudriavzevii HA-NY2 and Saccharomyces uvarum HA-NY3, and their efective biomedical applications. Bioprocess Biosyst Eng. 2021. https://doi.org/10.1007/s00449-020-02494-3 . (PMID: 10.1007/s00449-020-02494-3)
El-Ramady H, Alshaal T, Elhawat N, El-Dein Omara A, El-Nahrawy E, Omara AED, et al. Biological aspects of selenium and silicon nanoparticles in the terrestrial environments. In: Ansari AA, Gill SS, Gill R, Lanza GR, Newman L, editors., et al., Phytoremediation. Cham: Springer; 2019. p. 235–64. https://doi.org/10.1007/978-3-319-99651-6 . (PMID: 10.1007/978-3-319-99651-6)
Abdel-Kareem MM, Zohri AA. Extracellular mycosynthesis of gold nanoparticles using Trichoderma hamatum: optimization, characterization and antimicrobial activity. Lett Appl Microbiol. 2018;67:465–75. https://doi.org/10.1111/lam.13055 . (PMID: 10.1111/lam.1305530028030)
Lin P, Wang QF, Li TC, Yan FZ. An enhancement of antibacterial activity and synergistic effect of biosynthesized silver nanoparticles by Eurotium cristatum with various antibiotics. Biotechnol Bioprocess Eng. 2020;25:450–8. (PMID: 10.1007/s12257-019-0506-7)
Hashem AH, Khalil AMA, Reyad AM, Salem SS. Biomedical applications of mycosynthesized selenium nanoparticles using Penicillium expansum ATTC 36200. Biol Trace Elem Res. 2021;199:3998–4008. https://doi.org/10.1007/s12011-020-02506-z . (PMID: 10.1007/s12011-020-02506-z33387272)
Abdel-Kareem MM, Zohri AA, Rasmey AM. Biosynthesis of silver nanoparticles by Aspergillus sakultaensis and its antibacterial activity against human pathogens. Egypt J Microbiol. 2021;56(1):11–24.
Hussein HG, El-Sayed ER, Younis NA, Hamdy AA, Easa SM. Harnessing endophytic fungi for biosynthesis of selenium nanoparticles and exploring their bioactivities. AMB Express. 2022;12:68. https://doi.org/10.1186/s13568-022-01408-8 . (PMID: 10.1186/s13568-022-01408-8356749759177918)
Youssef MS, Ahmed SI, Mohamed IMA, Abdel-Kareem MM. Biosynthesis, spectrophotometric follow-up, characterization, and variable antimicrobial activities of Ag nanoparticles prepared by Edible Macrofungi. Biomolecules. 2023;13:1102. https://doi.org/10.3390/biom13071102 . (PMID: 10.3390/biom130711023750913710377419)
Rasmey AM, Aboseidah AA, Gaber S, Mahran F. Characterization and optimization of lipase activity produced by Pseudomonas monteilli 2403-KY120354 isolated from ground beef. Afr J Biotechnol. 2017;16:96–105. (PMID: 10.5897/AJB2016.15820)
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4. (PMID: 10.1093/molbev/msw054270049048210823)
Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25. (PMID: 3447015)
Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci. 2004;101:11030–5. (PMID: 10.1073/pnas.040420610115258291491989)
Xue B, He D, Gao S, Wang D, Yokoyama K, Wang L. Biosynthesis of silver nanoparticles by the fungus Arthroderma fulvum and its antifungal activity against genera of Candida, Aspergillus and Fusarium. Int J Nanomed. 2016;11:1899–906.
Clinical Laboratory Standards Institutes (CLSI): performance standards for Antimicrobial Susceptibility Testing. 32nd ed. M100; 2022.
El-Shennawy AG, Abd Ellatif SR, Badran GS, El-Sokkary HR. Silver nanoparticles: a potential antibacterial and antibiofilm agent against biofilm forming multidrug resistant bacteria. Microb Infect Dis. 2020;1(2):72–80. https://doi.org/10.21608/MID.2020.28087.1008 . (PMID: 10.21608/MID.2020.28087.1008)
Saxena S, Banerjee G, Garg R, Singh M. Comparative study of biofilm formation in Pseudomonas aeruginosa isolates from patients of lower respiratory tract infection. J Clin Diagn Res. 2014;8(5):DC09-DC11. https://doi.org/10.7860/JCDR/2014/7808.4330 . (PMID: 10.7860/JCDR/2014/7808.4330249951744079995)
Abdel-Wahab BDF, El Menofy GN, El-Batal AI, Mosallam MF, Abdulall KA. Enhanced antimicrobial activity of the combination of silver nanoparticles and different β Lactam antibiotics against methicillin resistant Staphylococcus aureus isolates. Azhar Int J Pharm Med Sci. 2021;1(1):22–31. https://doi.org/10.21608/aijpms.2021.53610.1017 . (PMID: 10.21608/aijpms.2021.53610.1017)
Mohanta KY, Biswas K, Jena KS, Hashem A, Abd-Allah FE, Mohanta KT. Anti-biofilm and antibacterial activities of silver nanoparticles synthesized by the reducing activity of phytoconstituents present in the Indian medicinal plants. Front Microbiol. 2020;11:1143. https://doi.org/10.3389/fmicb.2020.01143 . (PMID: 10.3389/fmicb.2020.01143326555117324531)
Wei GX, Campagna AN, Bobek LA (2006) Effect of MUC7 peptides on the growth of bacteria and on Streptococcus mutans biofilm. J Antimicrob Chemother 57(6):1100–1109. https://doi.org/10.1093/jac/dkl120. (PMID: 10.1093/jac/dkl12016595638)
Rao M, Jha B, Jha AK, Prasad K. Fungal nanotechnology: a Pandora to agricultural science and engineering. In: Prasad R, editor. Fungal nanotechnology. Fungal biology. Cham: Springer; 2017. https://doi.org/10.1007/978-3-319-68424-6_1 . (PMID: 10.1007/978-3-319-68424-6_1)
Zaki AG, El-Sayed ER, Abd Elkodous M, El-Sayyad GS. Microbial acetylcholinesterase inhibitors for Alzheimer’s therapy: recent trends on extraction, detection, irradiation-assisted production improvement and nano-structured drug delivery. Appl Microbiol Biotechnol. 2020;104:4717–35. https://doi.org/10.1007/s00253-020-10560-9 . (PMID: 10.1007/s00253-020-10560-9322851767223626)
El-Sayed ER. Discovery of the anticancer drug vinblastine from the endophytic Alternaria alternata and yield improvement by gamma irradiation mutagenesis. J Appl Microbiol. 2021. https://doi.org/10.1111/jam.15169 . (PMID: 10.1111/jam.1516934796581)
El-Sayed MA. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res. 2001;34:257–64. (PMID: 10.1021/ar960016n11308299)
Anil KS, Majid KA, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI. Nitrate reductase mediated synthesis of silver nanoparticles from AgNO3 . Biotechnol Lett. 2007;29:439–45. (PMID: 10.1007/s10529-006-9256-7)
Nahar K, Aziz S, Bashar M, Haque M, Al-Reza SM. Synthesis and characterization of Silver nanoparticles from Cinnamomum tamala leaf extract and its antibacterial potential. Int J Nano Dimens. 2020;11(1):88–98.
Vetchinkina E, Loshchinina E, Kursky V, Nikitina V. Reduction of organic and inorganic selenium compounds by the edible medicinal basidiomycete Lentinula edodes and the accumulation of elemental selenium nanoparticles in its mycelium. J Microbiol. 2013;51:829–35. (PMID: 10.1007/s12275-013-2689-524385361)
Zare B, Babaie S, Setayesh N, Shahverdi A. Isolation and characterization of a fungus for extracellular synthesis of small selenium nanoparticles. Nanomed J. 2012;1:14–20.
Singh T, Jyoti K, Patnaik A, Singh A, Chauhan R, Chandel S. Biosynthesis, characterization and antibacterial activity of silver nanoparticles using an endophytic fungal supernatant of Raphanus sativus. J Genet Eng Biotechnol. 2017;15:31–9. (PMID: 10.1016/j.jgeb.2017.04.005306476396296651)
Gangadoo S, Stanley D, Hughes RJ, Moore RJ, Chapman J. The synthesis and characterisation of highly stable and reproducible selenium nanoparticles. Inorg Nano-Met Chem. 2017;47(11):1568–76. (PMID: 10.1080/24701556.2017.1357611)
Gudikandula K, Vadapally P, Singara Charya MA. Biogenic synthesis of silver nanoparticles from white rot fungi: their characterization and antibacterial studies. Open Nano. 2017;2:64–78.
Chandran Priyadarshni K, Krishnamoorthi R, Mumtha C, Mahalingam PU. Biochemical analysis of cultivated mushroom, Pleurotus florida and synthesis of silver nanoparticles for enhanced antimicrobial effects on clinically important human pathogens. Inorg Chem Commun. 2022;142:109673. (PMID: 10.1016/j.inoche.2022.109673)
Sharma A, Sagar A, Rana J, Ran R. Green synthesis of silver nanoparticles and its antibacterial activity using fungus Talaromyces purpureogenus isolated from Taxus baccata Linn. Micro Nano Syst Lett. 2022;10:2. https://doi.org/10.1186/s40486-022-00144-9 . (PMID: 10.1186/s40486-022-00144-9)
Wu Y, Song M, Chai Z, Wang X. Enhanced photocatalytic activity of Ag/Ag2Ta4O11/g-C3N4 under wide-spectrum-light irradiation: H2 evolution from water reduction without co-catalyst. J Colloid Interface Sci. 2019;550:64–72. (PMID: 10.1016/j.jcis.2019.04.08731051342)
Kokila T, Ramesh PS, Geetha D. Biosynthesis of silver nanoparticles from Cavendish banana peel extract and its antibacterial and free radical scavenging assay: a novel biological approach. Appl Nanosci. 2015;5:911–20. (PMID: 10.1007/s13204-015-0401-2)
Saleh GM, Najim SS. Antibacterial activity of silver nanoparticles synthesized from plant latex. Iraqi J Agric Sci. 2020;61:1579–88. (PMID: 10.24996/ijs.2020.61.7.5)
Salman HD. Evaluation and comparison the antibacterial activity of silver nanoparticles (AgNPs) and silver nitrate (AgNO3 ) on some pathogenic bacteria. J Glob Pharma Technol. 2017;9:238–48.
Rahimi G, Alizadeh F, Khodavandi A. Mycosynthesis of silver nanoparticles from Candida albicans and its antibacterial activity against Escherichia coli and Staphylococcus aureus. Trop J Pharm Res. 2016;15:371–5. (PMID: 10.4314/tjpr.v15i2.21)
Geoffrion LD, Hesabizadeh T, Medina-Cruz D, Kusper M, Taylor P, Vernet-Crua A, Chen J. Naked selenium nanoparticles for antibacterial and anticancer treatments. ACS Omega. 2020;5:2660–9. https://doi.org/10.1021/acsomega.9b03172 . (PMID: 10.1021/acsomega.9b03172320956897033664)
Escobar-Ramírez CM, Castañeda-Ovando A, Pérez-Escalante E, Rodríguez-Serrano MG, Ramírez-Moreno E, Quintero-Lira A, Contreras-López E, Añorve-Morga J, Jaimez-Ordaz J, González-Olivares GL. Activity of Se-nanoparticles from bacterial biotransformation. Fermen. 2021;7:130. (PMID: 10.3390/fermentation7030130)
Zhang H, Li Z, Dai C, Wang P, Fan S, Yu B, Qu Y. Antibacterial properties and mechanism of selenium nanoparticles synthesized by Providencia sp. DCX. Environ Res. 2021;194:110630. (PMID: 10.1016/j.envres.2020.11063033345899)
Chandramohan S, Sundar K, Muthukumaran A. Reducing agents influence the shapes of selenium nanoparticles (SeNPs) and subsequently their antibacterial and antioxidant activity. Mater Res Express. 2019;6:0850i2. (PMID: 10.1088/2053-1591/ab29d6)
Goswami S, Sahareen T, Singh M, Kumar S. Role of biogenic silver nanoparticles in disruption of cell-cell adhesion in Staphylococcus aureus and Escherichia coli biofilm. J Ind Eng Chem. 2015;26:73–80. https://doi.org/10.1016/j.jiec.2014.11.017 . (PMID: 10.1016/j.jiec.2014.11.017)
Choi O, Yu CP, Esteban Fernández G, Hu Z. Interactions of nanosilver with Escherichia coli cells in planktonic and biofilm cultures. Water Res. 2010;44:6095–103. (PMID: 10.1016/j.watres.2010.06.06920659752)
Palanisamy NK, Ferina N, Amirulhusni AN, Mohd-Zain Z, Hussaini J, Ping LJ, Durairaj R. Antibiofilm properties of chemically synthesized silver nanoparticles found against Pseudomonas aeruginosa. J nanobiotechnol. 2014;12:2. https://doi.org/10.1186/1477-3155-12-2 . (PMID: 10.1186/1477-3155-12-2)
Ullah A, Mirani AZ, Binbin S, Wang F, Hussain WM, Aslam S, et al. An elucidative study of the anti-biofilm effect of selenium nanoparticles (SeNPs) on selected biofilm producing pathogenic bacteria: a disintegrating effect of SeNPs on bacteria. Process Biochem. 2023;126:98–107. (PMID: 10.1016/j.procbio.2022.12.031)
Shokoofeh N, Moradi-Shoeili Z, Naeemi AS, et al. Biosynthesis of Fe3 O4 @Ag nanocomposite and evaluation of its performance on expression of norA and norB efflux pump genes in ciprofloxacin-resistant Staphylococcus aureus. Biol Trace Elem Res. 2019;191:522–30. https://doi.org/10.1007/s12011-019-1632-y . (PMID: 10.1007/s12011-019-1632-y30788722)
Kahzad N, Salehzadeh A. Green synthesis of CuFe2 O4 @Ag nanocomposite using the Chlorella vulgaris and evaluation of its effect on the expression of norA efflux pump gene among Staphylococcus aureus strains. Biol Trace Elem Res. 2020;198:359–70. https://doi.org/10.1007/s12011-020-02055-5 . (PMID: 10.1007/s12011-020-02055-532067154)
Panácek A, Smékalová M, Kilianová M, Prucek R, Bogdanová K, Vecerová R, et al. Strong and nonspecific synergistic antibacterial efficiency of antibiotics combined with silver nanoparticles at very low concentrations showing no cytotoxic effect. Molecules. 2016;21:1–26. https://doi.org/10.3390/molecules21010026 . (PMID: 10.3390/molecules21010026)
Zendegani E, Dolatabadi S. The efficacy of imipenem conjugated with synthesized silver nanoparticles against Acinetobacter baumannii clinical isolates. Iran Biol Trace Elem Res. 2020;197(1):330–40. (PMID: 10.1007/s12011-019-01962-631701463)
Haji HS, Fattma A, Ali AF, Hanna TS. Synergistic antibacterial activity of silver nanoparticles biosynthesized by carbapenem-resistant Gram-negative bacilli. Sci Rep. 2022;12:15254. (PMID: 10.1038/s41598-022-19698-0360853349463142)
Abdolhosseini M, Zamani H, Salehzadeh A. Synergistic antimicrobial potential of ciprofloxacin with silver nanoparticles conjugated to thiosemicarbazide against ciprofloxacin resistant Pseudomonas aeruginosa by attenuation of MexA-B efflux pump genes. Biologia. 2019;74:1191–6. https://doi.org/10.2478/s11756-019-00269-0 . (PMID: 10.2478/s11756-019-00269-0)
Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan N. Synthesis of silver nanoparticles using acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloid Surf B. 2010;76:50–6. (PMID: 10.1016/j.colsurfb.2009.10.008) - Contributed Indexing: Keywords: Aspergillus carneus; Antibacterial; Antibiofilm; Characterization; Silver and selenium nanoparticles; Synergistic effect
- الرقم المعرف: 3M4G523W1G (Silver)
0 (Anti-Bacterial Agents)
H6241UJ22B (Selenium) - الموضوع: Date Created: 20250104 Date Completed: 20250106 Latest Revision: 20250705
- الموضوع: 20250706
- الرقم المعرف: PMC11700447
- الرقم المعرف: 10.1186/s12934-024-02604-w
- الرقم المعرف: 39755661
- المصدر:
حقوق النشر© 2024، دائرة الثقافة والسياحة جميع الحقوق محفوظة Powered By EBSCO Stacks 3.3.0 [353] | Staff Login

حقوق النشر © دائرة الثقافة والسياحة، جميع الحقوق محفوظة
No Comments.