Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Effects of Exercise Training and L-Arginine Loaded Chitosan Nanoparticles on Hippocampus Histopathology, β-Secretase Enzyme Function, APP, Tau, Iba1and APOE-4 mRNA in Aging Rats.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Springer Country of Publication: United States NLM ID: 100929017 Publication Model: Electronic Cited Medium: Internet ISSN: 1476-3524 (Electronic) Linking ISSN: 10298428 NLM ISO Abbreviation: Neurotox Res Subsets: MEDLINE
    • بيانات النشر:
      Publication: <2009-> : New York : Springer
      Original Publication: [Amsterdam?] : Harwood Academic Publishers,
    • الموضوع:
    • نبذة مختصرة :
      The objective of this study was to evaluate the combined and independent effects of exercise training and L-Arginine loaded chitosan nanoparticles (LA CNPs) supplementation on hippocampal Tau, App, Iba1, and ApoE gene expression, oxidative stress, β-secretase enzyme activity, and hippocampus histopathology in aging rats. Thirty-five male Wistar rats were randomly assigned to five groups (n = 7 in each): Young (8 weeks old), Old (20 months old), old + L-arginine supplementation (Old Sup), old + exercise (Old Exe) and old + L-arginine supplementation + exercise (Old Sup + Exe). LA CNPs were administered to the supplement groups through gavage at a dosage of 500 mg/kg/day for 6-weeks. Exercise groups were subjected to a swimming exercise program five days/week for the same duration. Upon the completion of their interventions, the animals underwent behavioral and open-field task tests and were subsequently sacrificed for hippocampus genetic and histopathological evaluation. For histopathological analysis of brain, Cresyl violet staining was used. Congo Red staining was employed to confirm amyloid plaques in the hippocampus. Expressions of Tau, App, Iba1, and ApoE genes were determined by real-time PCR. In contrast to the Old group, Old Exe and Old Sup + Exe groups spent more time in the central space in the open field task (p < 0.05) and have more live cells in the hippocampus. Old rats (Old, Old Sup and Old Exe groups) exhibited a significant Aβ peptide accumulation and increases in APP, Tau, Iba1, APOE-4 mRNA and MDA, along with decreases in SOD compared to the young group (p < 0.05). However, LA CNPs supplementation, exercise, and their combination (Old Sup, Old Exe and Old Sup + Exe) significantly reduced MDA, Aβ plaque as well as APP, Tau, Iba1, and APOE-4 mRNA compared to the Old group (p < 0.05). Consequently, the administration of LA CNPs supplements and exercise might regulate the risk factors of hippocampus cell and tissue.
      (© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
    • References:
      Abdulkadir TS, Isa AS, Dawud FA et al (2021) Effect of taurine and camel milk on amyloid beta peptide concentration and oxidative stress changes in aluminium chloride-induced Alzheimer’s disease rats. Alzheimer’s Dementia: J Alzheimer’s Association 17:e058642. https://doi.org/10.1002/alz.058642. (PMID: 10.1002/alz.058642)
      Alinaghipour A, Mazoochi T, Ardjmand A (2019) Low-dose ethanol ameliorates amnesia induced by a brief seizure model: the role of NMDA signaling. Neurol Res 41:624–632. https://doi.org/10.1080/01616412.2019.1602322. (PMID: 10.1080/01616412.2019.160232230967097)
      Alkadhi KA, Dao AT (2018) Exercise decreases BACE and APP levels in the hippocampus of a rat model of Alzheimer’s disease. Mol Cell Neurosci 86:25–29. https://doi.org/10.1016/j.mcn.2017.11.008. (PMID: 10.1016/j.mcn.2017.11.00829128320)
      Alvarado JC, Fuentes-Santamaría V, Gabaldón-Ull MC et al (2014) Wistar rats: a forgotten model of age-related hearing loss. Front Aging Neurosci 6:1–20. https://doi.org/10.3389/fnagi.2014.00029. (PMID: 10.3389/fnagi.2014.00029)
      Amirazodi F, Mehrabi A, Amirazodi M et al (2020) The Combination effects of Resveratrol and Swimming HIIT Exercise on Novel object recognition and open-field tasks in aged rats. Exp Aging Res 46:336–358. https://doi.org/10.1080/0361073X.2020.1754015. (PMID: 10.1080/0361073X.2020.175401532324489)
      Arikawe AP, Olusanya AW, Udenze IK et al (2019) L-Arginine administration improves cognition and oxidative stress parameters in the hippocampus and frontal lobe of 4-Vinylcyclohexene diepoxide perimenopausal female rats: L-arginine improves cognition in perimenopause. Afr J Biomedical Res 22:287–293.
      Baghishani F, Mohammadipour A, Hosseinzadeh H et al (2018) The effects of tramadol administration on hippocampal cell apoptosis, learning and memory in adult rats and neuroprotective effects of crocin. Metab Brain Dis 33:907–916. https://doi.org/10.1007/s11011-018-0194-6. (PMID: 10.1007/s11011-018-0194-6294707675956046)
      Bernardo TC, Marques-Aleixo I, Beleza J et al (2016) Physical Exercise and Brain mitochondrial fitness: the possible role against Alzheimer’s Disease. Brain Pathol 26:648–663. https://doi.org/10.1111/bpa.12403. (PMID: 10.1111/bpa.12403273280588029062)
      Bertoldi K, Cechinel LR, Schallenberger B et al (2017) Aging process alters hippocampal and cortical secretase activities of Wistar rats. Behav Brain Res 317:374–381. https://doi.org/10.1016/j.bbr.2016.09.066. (PMID: 10.1016/j.bbr.2016.09.06627702637)
      Burrinha T, Gomes R, Terrasso AP, Almeida CG (2019) Neuronal aging potentiates beta-amyloid generation via amyloid precursor protein endocytosis. bioRxiv 616540. https://doi.org/10.1101/616540.
      Casimiro I, Chinnasamy P, Sibinga NES (2013) Genetic inactivation of the allograft inflammatory factor-1 locus. Genesis 51:734–740. https://doi.org/10.1002/dvg.22424. (PMID: 10.1002/dvg.2242423929822)
      Chakraborti A, Gulati K, Ray A (2008) Age related differences in stress-induced neurobehavioral responses in rats: modulation by antioxidants and nitrergic agents. Behav Brain Res 194:86–91. (PMID: 10.1016/j.bbr.2008.06.02718640158)
      Che H, Sun LH, Guo F et al (2014) Expression of amyloid-associated miRNAs in both the forebrain cortex and hippocampus of middle-aged rat. Cell Physiol Biochem 33:11–22. https://doi.org/10.1159/000356646. (PMID: 10.1159/00035664624401368)
      Chen S-F, Pan M-X, Tang J-C et al (2020) Arginine is neuroprotective through suppressing HIF-1α/LDHA-mediated inflammatory response after cerebral ischemia/reperfusion injury. Mol Brain 13:63. https://doi.org/10.1186/s13041-020-00601-9. (PMID: 10.1186/s13041-020-00601-9323215557175589)
      Chesworth R, Gamage R, Ullah F et al (2021) Spatial memory and Microglia activation in a mouse model of chronic neuroinflammation and the anti-inflammatory effects of Apigenin. Front NeuroSci 15:1–14. https://doi.org/10.3389/fnins.2021.699329. (PMID: 10.3389/fnins.2021.699329)
      Chinnasamy P, Lutz SE, Riascos Bernal DF et al (2015) Loss of allograft inflammatory factor-1 ameliorates experimental autoimmune encephalomyelitis by limiting encephalitogenic CD4 T-cell expansion. Mol Med 21:233–241. https://doi.org/10.2119/molmed.2014.00264. (PMID: 10.2119/molmed.2014.00264255698054503655)
      Cole SL, Vassar R (2007) The Alzheimer’s disease β-secretase enzyme, BACE1. Mol Neurodegeneration 2:1–25. https://doi.org/10.1186/1750-1326-2-22. (PMID: 10.1186/1750-1326-2-22)
      Council NR (2011) Guide for the Care and Use of Laboratory animals: Eighth Edition. The National Academies, Washington, DC.
      de Meireles LCF, Bertoldi K, Cechinel LR et al (2016) Treadmill exercise induces selective changes in hippocampal histone acetylation during the aging process in rats. Neurosci Lett 634:19–24. https://doi.org/10.1016/j.neulet.2016.10.008. (PMID: 10.1016/j.neulet.2016.10.00827717826)
      Devi L, Ohno M (2013) Mechanisms that lessen benefits of β-secretase reduction in a mouse model of Alzheimer’s disease. Translational Psychiatry 3:1–9. https://doi.org/10.1038/tp.2013.59. (PMID: 10.1038/tp.2013.59)
      Duyckaerts C, Potier MC, Delatour B (2008) Alzheimer disease models and human neuropathology. Similarities and differences.
      Egert S, Rimbach G, Huebbe P (2012) ApoE genotype: from geographic distribution to function and responsiveness to dietary factors. Proc Nutr Soc 71:410–424. https://doi.org/10.1017/S0029665112000249. (PMID: 10.1017/S002966511200024922564824)
      Elsner VR, Lovatel GA, Moysés F et al (2013) Exercise induces age-dependent changes on epigenetic parameters in rat hippocampus: a preliminary study. Exp Gerontol 48:136–139. https://doi.org/10.1016/j.exger.2012.11.011. (PMID: 10.1016/j.exger.2012.11.01123201423)
      Fernandez CG, Hamby ME, McReynolds ML, Ray WJ (2019) The role of APOE4 in disrupting the homeostatic functions of astrocytes and Microglia in Aging and Alzheimer’s Disease. Front Aging Neurosci 11:14. https://doi.org/10.3389/fnagi.2019.00014. (PMID: 10.3389/fnagi.2019.00014308047766378415)
      Fischer B, Wagner AP (1997) Synaptic plasticity is preserved in the temporal cortex of 20-month-old rats. Arch Gerontol Geriatr 25:27–39. https://doi.org/10.1016/S0167-4943(96)00769-8.
      Fonar G, Polis B, Meirson T et al (2018) Intracerebroventricular administration of L-arginine improves spatial memory acquisition in triple transgenic mice via reduction of oxidative stress and apoptosis. Translational Neurosci 9:43–53. https://doi.org/10.1515/tnsci-2018-0009.
      Fukui K, Onodera K, Shinkai T et al (2001) Impairment of learning and memory in rats caused by oxidative stress and aging, and changes in antioxidative defense systems. Ann N Y Acad Sci 928:168–175. https://doi.org/10.1111/j.1749-6632.2001.tb05646.x. (PMID: 10.1111/j.1749-6632.2001.tb05646.x11795507)
      Fukumoto H, Rosene DL, Moss MB et al (2004) β-Secretase activity increases with aging in Human, Monkey, and mouse brain. Am J Pathol 164:719–725. (PMID: 10.1016/S0002-9440(10)63159-8147422751602259)
      Furcila D, DeFelipe J, Alonso-Nanclares L (2018) A study of amyloid-β and phosphotau in plaques and neurons in the hippocampus of Alzheimer’s disease patients. J Alzheimer’s Disease 64:417–435. https://doi.org/10.3233/JAD-180173. (PMID: 10.3233/JAD-180173)
      Gong X, Chen Y, Chang J et al (2018) Environmental enrichment reduces adolescent anxiety-and depression-like behaviors of rats subjected to infant nerve injury. J Neuroinflamm 15:1–13. https://doi.org/10.1186/s12974-018-1301-7. (PMID: 10.1186/s12974-018-1301-7)
      Guglielmotto M, Aragno M, Autelli R et al (2009) The up-regulation of BACE1 mediated by hypoxia and ischemic injury: role of oxidative stress and HIF1α. J Neurochem 108:1045–1056. (PMID: 10.1111/j.1471-4159.2008.05858.x19196431)
      Guo T, Zhang D, Zeng Y et al (2020) Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol Neurodegeneration 15.
      Hamezah HS, Durani LW, Ibrahim NF et al (2017) Volumetric changes in the aging rat brain and its impact on cognitive and locomotor functions. Exp Gerontol 99:69–79. https://doi.org/10.1016/j.exger.2017.09.008. (PMID: 10.1016/j.exger.2017.09.00828918364)
      Hirfanoglu I, Turkyilmaz C, Turkyilmaz Z et al (2019) Neuroprotective effect of L-arginine in a neonatal rat model of hypoxic-ischemia. Int J Neurosci 129:1139–1144. https://doi.org/10.1080/00207454.2019.1636794. (PMID: 10.1080/00207454.2019.163679431234674)
      Hosseini M, Pourganji M, Khodabandehloo F et al (2012) Protective effect of L-Arginine against oxidative damage as a possible mechanism of its Bene.cial properties on spatial learning in ovariectomized rats TT -. BCN 3:36–44.
      Jahangiri Z, Gholamnezhad Z, Hosseini M (2019) Neuroprotective effects of exercise in rodent models of memory deficit and Alzheimer’s. Metab Brain Dis 34:21–37. https://doi.org/10.1007/s11011-018-0343-y. (PMID: 10.1007/s11011-018-0343-y30443769)
      Jeong N, Singer AC (2022) Learning from inhibition: functional roles of hippocampal CA1 inhibition in spatial learning and memory. Curr Opin Neurobiol 76:102604. https://doi.org/10.1016/j.conb.2022.102604. (PMID: 10.1016/j.conb.2022.10260435810533)
      Jiang P, Dang R-L, Li H-D et al (2014) The impacts of Swimming Exercise on hippocampal expression of neurotrophic factors in rats exposed to chronic unpredictable mild stress. Evidence-Based Complement Altern Med 2014:729827. https://doi.org/10.1155/2014/729827. (PMID: 10.1155/2014/729827)
      Kalantarzadeh E, Radahmadi M, Reisi P (2022) The impact of different dark chocolate dietary patterns on synaptic potency and plasticity in the hippocampal CA1 area of the rats under chronic isolation stress. Nutr Neurosci 0:1–10. https://doi.org/10.1080/1028415X.2022.2088946. (PMID: 10.1080/1028415X.2022.2088946)
      Karami M, Geravand S, Rahimpour M (2022) Protective effect of L-Arginine in an animal model of Alzheimer’s Disease Induced by Intra-hippocampal Injection of AlCl3. Neurol India 70:548–553. https://doi.org/10.4103/0028-3886.344672. (PMID: 10.4103/0028-3886.34467235532618)
      Kharazmi K, Alani B, Heydari A, Ardjmand A (2022) Protection against Morphine-Induced Inhibitory Avoidance Memory Impairment in Rat by Curcumin: possible role of nitric Oxide/cAMP-Response element binding protein pathway. Iran J Med Sci 47:594. https://doi.org/10.30476/IJMS.2022.92131.2339. (PMID: 10.30476/IJMS.2022.92131.2339363809709652497)
      Kiernan JA (1999) Histological and Histochemical Methods: Theory and Practice, 3rd New ed. Taylor & Francis Ltd, London, United Kingdom.
      Kim H, Lee SH, Kim SS et al (2007) The influence of maternal treadmill running during pregnancy on short-term memory and hippocampal cell survival in rat pups. Int J Dev Neurosci 25:243–249. (PMID: 10.1016/j.ijdevneu.2007.03.00317434282)
      Koga Y, Akita Y, Nishioka J et al (2005) L-arginine improves the symptoms of strokelike episodes in MELAS. Neurology 64:710–712. https://doi.org/10.1212/01.WNL.0000151976.60624.01. (PMID: 10.1212/01.WNL.0000151976.60624.0115728297)
      Lee AL, Ogle WO, Sapolsky RM (2002) Stress and depression: possible links to neuron death in the hippocampus. Bipolar Disord 4:117–128. https://doi.org/10.1034/j.1399-5618.2002.01144.x. (PMID: 10.1034/j.1399-5618.2002.01144.x12071509)
      Li B, Liang F, Ding X et al (2019) Interval and continuous exercise overcome memory deficits related to β-Amyloid accumulation through modulating mitochondrial dynamics. Behav Brain Res 376:112171. https://doi.org/10.1016/j.bbr.2019.112171. (PMID: 10.1016/j.bbr.2019.11217131445975)
      Lituma PJ, Woo E, O’Hara BF et al (2021) Altered synaptic connectivity and brain function in mice lacking microglial adapter protein Iba1. Proc Natl Acad Sci USA 118. https://doi.org/10.1073/pnas.2115539118.
      Lovatel GA, Elsner VR, Bertoldi K et al (2013) Treadmill exercise induces age-related changes in aversive memory, Neuroinflammatory and epigenetic processes in the rat hippocampus. Neurobiol Learn Mem 101:94–102. https://doi.org/10.1016/j.nlm.2013.01.007. (PMID: 10.1016/j.nlm.2013.01.00723357282)
      Lu Y, Dong Y, Tucker D et al (2017) Treadmill Exercise exerts Neuroprotection and regulates microglial polarization and oxidative stress in a Streptozotocin-Induced Rat Model of sporadic Alzheimer’s Disease. J Alzheimer’s Disease: JAD 56:1469–1484. https://doi.org/10.3233/JAD-160869. (PMID: 10.3233/JAD-16086928157094)
      Lv S, Zhang Y, Lin Y et al (2023) ApoE4 exacerbates the senescence of hippocampal neurons and spatial cognitive impairment by downregulating acetyl-CoA level. https://doi.org/10.1111/acel.13932 . Aging Cell e13932.
      Mamsa SSA, Meloni BP (2021) Arginine and arginine-rich peptides as modulators of protein aggregation and cytotoxicity Associated with Alzheimer’s Disease. Front Mol Neurosci 14:1–19. https://doi.org/10.3389/fnmol.2021.759729. (PMID: 10.3389/fnmol.2021.759729)
      Manek E, Darvas F, Petroianu GA (2020) Use of biodegradable, Chitosan-based nanoparticles in the treatment of alzheimer’s disease. Molecules 25:1–26. https://doi.org/10.3390/molecules25204866. (PMID: 10.3390/molecules25204866)
      Marosi K, Bori Z, Hart N et al (2012) Long-term exercise treatment reduces oxidative stress in the hippocampus of aging rats. Neuroscience 226:21–28. https://doi.org/10.1016/j.neuroscience.2012.09.001. (PMID: 10.1016/j.neuroscience.2012.09.00122982624)
      Mokhtari Sangdehi SR, Hajizadeh Moghaddam A, Ranjbar M (2021) Anti-apoptotic effect of silymarin-loaded chitosan nanoparticles on hippocampal caspase-3 and Bcl-2 expression following cerebral ischemia/reperfusion injury. Int J Neurosci 1–8. https://doi.org/10.1080/00207454.2020.1860971.
      Namgyal D, Ali S, Hussain MD et al (2021) Curcumin ameliorates the Cd-Induced anxiety-like Behavior in mice by regulating oxidative stress and Neuro-Inflammatory Proteins in the Prefrontal Cortex Region of the brain. Antioxid (Basel Switzerland) 10. https://doi.org/10.3390/antiox10111710.
      Nichol K, Deeny SP, Seif J et al (2009) Exercise improves cognition and hippocampal plasticity in APOE ϵ4 mice. Alzheimer’s Dement 5:287–294. (PMID: 10.1016/j.jalz.2009.02.006)
      Ohia-Nwoko O, Montazari S, Lau YS, Eriksen JL (2014) Long-term treadmill exercise attenuates tau pathology in P301S tau transgenic mice. Mol Neurodegeneration 9.
      Ohta F, Takagi T, Sato H, Ignarro LJ (2007) Low-dose L-arginine administration increases microperfusion of hindlimb muscle without affecting blood pressure in rats. Proc Natl Acad Sci USA 104:1407–1411. https://doi.org/10.1073/pnas.0610207104. (PMID: 10.1073/pnas.0610207104172298411783113)
      Ohtsuka Y, Nakaya J (2000) Effect of oral administration of L-arginine on senile dementia. Am J Med 108:439. (PMID: 10.1016/S0002-9343(99)00396-410759111)
      Ortiz MDC, Lores-Arnaiz S, Albertoni Borghese MF et al (2013) Mitochondrial dysfunction in brain cortex mitochondria of STZ-diabetic rats: effect of l-Arginine. Neurochem Res 38:2570–2580. https://doi.org/10.1007/s11064-013-1172-3. (PMID: 10.1007/s11064-013-1172-324190597)
      Ouyang Q-Q, Zhao S, Li S-D, Song C (2017) Application of Chitosan, Chitooligosaccharide, and their derivatives in the treatment of Alzheimer’s Disease. Mar Drugs 15. https://doi.org/10.3390/md15110322.
      Panahi N, Mahmoudian M, Mortazavi P, Hashjin GS (2013) Experimental research effects of berberine on β-secretase activity in a rabbit model of Alzheimer’s disease. Archives Med Sci 9:146–150. https://doi.org/10.5114/aoms.2013.33354. (PMID: 10.5114/aoms.2013.33354)
      Parasuraman R, Greenwood PM, Sunderland T (2002) The apolipoprotein E gene, attention, and brain function. Neuropsychology 16:254–274. https://doi.org/10.1037/0894-4105.16.2.254. (PMID: 10.1037/0894-4105.16.2.254119497181350934)
      Parihar VK, Hattiangady B, Kuruba R et al (2011) Predictable chronic mild stress improves mood, hippocampal neurogenesis and memory. Mol Psychiatry 16:171–183. https://doi.org/10.1038/mp.2009.130. (PMID: 10.1038/mp.2009.13020010892)
      Patil MD, Bhaumik J, Babykutty S et al (2016) Arginine dependence of tumor cells: targeting a chink in cancer’s armor. Oncogene 35:4957–4972. https://doi.org/10.1038/onc.2016.37. (PMID: 10.1038/onc.2016.37271091035457742)
      Pervin M, Unno K, Konishi T, Nakamura Y (2021) L-arginine exerts excellent anti-stress effects on stress-induced shortened lifespan, cognitive decline and depression. Int J Mol Sci 22:1–14. https://doi.org/10.3390/ijms22020508. (PMID: 10.3390/ijms22020508)
      Poveda CM, Popović N, Morales-Delgado N et al (2020) The diurnal variation of open-field habituation in rats. Behav Process 178:104186. https://doi.org/10.1016/j.beproc.2020.104186. (PMID: 10.1016/j.beproc.2020.104186)
      Radák Z, Kaneko T, Tahara S et al (2001) Regular exercise improves cognitive function and decreases oxidative damage in rat brain. Neurochem Int 38:17–23. https://doi.org/10.1016/s0197-0186(00)00063-2. (PMID: 10.1016/s0197-0186(00)00063-210913684)
      Ramanathan L, Gulyani S, Nienhuis R, Siegel JM (2002) Sleep deprivation decreases superoxide dismutase activity in rat hippocampus and brainstem. NeuroReport 13:1387. https://doi.org/10.1097/00001756-200208070-00007. (PMID: 10.1097/00001756-200208070-00007121677588802885)
      Rashedi J, Haghjo AG, Abbasi MM et al (2019) Anti-tumor effect of quercetin loaded chitosan nanoparticles on induced colon cancer in Wistar rats. Adv Pharm Bull 9. https://doi.org/10.15171/apb.2019.048.
      Russo ML, Molina-Campos E, Ybarra N et al (2021) Variability in sub-threshold signaling linked to Alzheimer’s disease emerges with age and amyloid plaque deposition in mouse ventral CA1 pyramidal neurons. Neurobiol Aging 106:207–222. https://doi.org/10.1016/j.neurobiolaging.2021.06.018. (PMID: 10.1016/j.neurobiolaging.2021.06.01834303222)
      Salim S, Sarraj N, Taneja M et al (2010) Moderate treadmill exercise prevents oxidative stress-induced anxiety-like behavior in rats. Behav Brain Res 208:545–552. https://doi.org/10.1016/j.bbr.2009.12.039. (PMID: 10.1016/j.bbr.2009.12.03920064565)
      Santarelli L, Saxe M, Gross C et al (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Sci (New York NY) 301:805–809. https://doi.org/10.1126/science.1083328. (PMID: 10.1126/science.1083328)
      Sarkar D (2020) A review of behavioral tests to evaluate different types of anxiety and anti-anxiety effects. Clin Psychopharmacol Neuroscience: Official Sci J Korean Coll Neuropsychopharmacol 18:341–351. https://doi.org/10.9758/cpn.2020.18.3.341. (PMID: 10.9758/cpn.2020.18.3.341)
      Scali C, Casamenti F, Pazzagli M et al (1994) Nerve growth factor increases extracellular acetylcholine levels in the parietal cortex and hippocampus of aged rats and restores object recognition. Neurosci Lett 170:117–120. https://doi.org/10.1016/0304-3940(94)90253.
      Sengupta P (2013) The laboratory rat: relating its age with human’s. Int J Prev Med 4:624. (PMID: 239301793733029)
      Shi Y, Yamada K, Liddelow SA et al (2017) ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature 549:523–527. https://doi.org/10.1038/nature24016. (PMID: 10.1038/nature24016289599565641217)
      Singhal G, Morgan J, Jawahar MC et al (2020) Effects of aging on the motor, cognitive and affective behaviors, neuroimmune responses and hippocampal gene expression. Behav Brain Res 383:112501. https://doi.org/10.1016/j.bbr.2020.112501. (PMID: 10.1016/j.bbr.2020.11250131987935)
      Stone V, Kudo KY, Marcelino TB et al (2015) Swimming exercise enhances the hippocampal antioxidant status of female Wistar rats. Redox Report: Commun free Radical Res 20:133–138. https://doi.org/10.1179/1351000214Y.0000000116. (PMID: 10.1179/1351000214Y.0000000116)
      Suthana NA, Ekstrom AD, Moshirvaziri S et al (2009) Human hippocampal CA1 involvement during allocentric encoding of spatial information. J Neurosci 29:10512–10519. https://doi.org/10.1523/JNEUROSCI.0621-09.2009. (PMID: 10.1523/JNEUROSCI.0621-09.2009197103042873654)
      Tamagno E, Guglielmotto M, Vasciaveo V, Tabaton M (2021) Oxidative stress and Beta amyloid in Alzheimer’s Disease. Which comes first: the Chicken or the Egg? Antioxid (Basel Switzerland) 10. https://doi.org/10.3390/antiox10091479.
      Tokgöz S, Claassen JAHR (2021) Exercise as potential therapeutic target to modulate Alzheimer’s Disease Pathology in APOE ε4 carriers: a systematic review. Cardiol Therapy 10:67–88. https://doi.org/10.1007/s40119-020-00209-z. (PMID: 10.1007/s40119-020-00209-z)
      Toz H, Değer Y (2018) The Effect of Chitosan on the erythrocyte antioxidant potential of lead toxicity-Induced rats. Biol Trace Elem Res 184:114–118. https://doi.org/10.1007/s12011-017-1164-2. (PMID: 10.1007/s12011-017-1164-228971372)
      Tsubuku S, Hatayama K, Mawatari K et al (2004) Thirteen-week oral toxicity study of L-arginine in rats. Int J Toxicol 23:101–105. https://doi.org/10.1080/10915810490435622. (PMID: 10.1080/1091581049043562215204729)
      Tukozkan N, Erdamar H, Seven I (2006) Measurement of total malondialdehyde in plasma and tissues by high-performance liquid chromatography and thiobarbituric acid assay. Firat Tip Dergisi 11:88–92.
      Underwood W, Anthony R (2020) AVMA guidelines for the euthanasia of animals: 2020 edition. Retrieved March 2013:2020–2021.
      van Praag H, Shubert T, Zhao C, Gage FH (2005) Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neuroscience: Official J Soc Neurosci 25:8680–8685. https://doi.org/10.1523/JNEUROSCI.1731-05.2005. (PMID: 10.1523/JNEUROSCI.1731-05.2005)
      Vauzour D, Camprubi-Robles M, Miquel-Kergoat S et al (2017) Nutrition for the ageing brain: towards evidence for an optimal diet. Ageing Res Rev 35:222–240. https://doi.org/10.1016/j.arr.2016.09.010. (PMID: 10.1016/j.arr.2016.09.01027713095)
      Vollmayr B, Mahlstedt MM, Henn FA (2007) Neurogenesis and depression: what animal models tell us about the link. Eur Arch Psychiatry Clin NeuroSci 257:300–303. https://doi.org/10.1007/s00406-007-0734-2. (PMID: 10.1007/s00406-007-0734-217401725)
      Wu C, Yang L, Li Y et al (2020) Effects of Exercise Training on anxious-depressive-like Behavior in Alzheimer Rat. Med Sci Sports Exerc 52:1456–1469. https://doi.org/10.1249/MSS.0000000000002294. (PMID: 10.1249/MSS.0000000000002294320284568015320)
      Xiao K, Luo Y, Liang X et al (2021) Beneficial effects of running exercise on hippocampal microglia and neuroinflammation in chronic unpredictable stress-induced depression model rats. Translational Psychiatry 11:461. https://doi.org/10.1038/s41398-021-01571-9. (PMID: 10.1038/s41398-021-01571-9344893958421357)
      Xu Y, Zhan C, Fan L et al (2007) Preparation of dual crosslinked alginate-chitosan blend gel beads and in vitro controlled release in oral site-specific drug delivery system. Int J Pharm 336:329–337. https://doi.org/10.1016/j.ijpharm.2006.12.019. (PMID: 10.1016/j.ijpharm.2006.12.01917223290)
      Yan SD, Yan SF, Chen X et al (1995) Non-enzymatically glycated tau in Alzheimer’s disease induces neuronal oxidant stress resulting in cytokine gene expression and release of amyloid beta-peptide. Nat Med 1:693–699. https://doi.org/10.1038/nm0795-693. (PMID: 10.1038/nm0795-6937585153)
      Yi J, Horky LL, Friedlich AL et al (2009) L-Arginine and Alzheimer’s disase. Int J Clin Exp Pathol 2:211–238. (PMID: 19079617)
      Zarbakhsh S, Safari M, Aldaghi MR et al (2019) Irisin protects the substantia nigra dopaminergic neurons in the rat model of Parkinson’s disease. Iran J Basic Med Sci 22:722–728. https://doi.org/10.22038/ijbms.2019.33444.7987. (PMID: 10.22038/ijbms.2019.33444.7987323732927196356)
      Zhang S, Hu X, Guan W et al (2017) Isoflurane anesthesia promotes cognitive impairment by inducing expression of β-amyloid protein-related factors in the hippocampus of aged rats. PLoS ONE 12:e0175654. https://doi.org/10.1371/journal.pone.0175654. (PMID: 10.1371/journal.pone.0175654284032305389819)
    • Contributed Indexing:
      Keywords: Aging; Hippocampus; Nano supplement; Swimming exercise; Wistar rat
    • الرقم المعرف:
      EC 3.4.- (Amyloid Precursor Protein Secretases)
      9012-76-4 (Chitosan)
      0 (Apolipoproteins E)
      94ZLA3W45F (Arginine)
    • الموضوع:
      Date Created: 20240305 Date Completed: 20240306 Latest Revision: 20240420
    • الموضوع:
      20250114
    • الرقم المعرف:
      10.1007/s12640-024-00699-y
    • الرقم المعرف:
      38441819