Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Land use dynamics and its influences on groundwater depth levels in South region of National Capital Territory (NCT) of Delhi, India.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • المؤلفون: Tanwar D;Tanwar D; Tyagi S; Tyagi S; Sarma K; Sarma K
  • المصدر:
    Environmental monitoring and assessment [Environ Monit Assess] 2023 Sep 09; Vol. 195 (10), pp. 1174. Date of Electronic Publication: 2023 Sep 09.
  • نوع النشر :
    Journal Article
  • اللغة:
    English
  • معلومة اضافية
    • المصدر:
      Publisher: Springer Country of Publication: Netherlands NLM ID: 8508350 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-2959 (Electronic) Linking ISSN: 01676369 NLM ISO Abbreviation: Environ Monit Assess Subsets: MEDLINE
    • بيانات النشر:
      Publication: 1998- : Dordrecht : Springer
      Original Publication: Dordrecht, Holland ; Boston : D. Reidel Pub. Co., c1981-
    • الموضوع:
    • نبذة مختصرة :
      The present study envisions the influences of land use dynamics on the spatial trend of groundwater depth levels over a period of two decades in the south region of NCT Delhi, India. The findings have inferred that among five major LULC categories, built-up has shown a sprawling trend (+2.17 km 2 /year) from the north, northeastern, and central portions to the confined patches observed in the south and southwest fringes of South Delhi from 2001 to 2021. Likewise, vegetation class has also witnessed significant increment (+1.91 km 2 /year) to the peripheral boundary, i.e., southern, southwest/eastern fringes, and central portions under recent initiatives of city forests, plantation drives, and urban green spaces programs. On the contrary, a negative rate of change has been observed in fallow land (-2.78 km 2 /year), agriculture (-1.22 km 2 /year), and water bodies (-0.07 km 2 /year). LULC transition matrix has also showed prominent conversion of fallow land into vegetation and built-up class, and change of vegetation into built-up, and fallow land category. Subsequently, corresponding LULC maps have been superimposed with long-term trends of groundwater depth levels (as spatial contours). For entire South Delhi region, depth to water levels ranged from 2.02 to 66.45 meters below ground level (mbgl) where shallower depths followed a negative trend and remain persistent throughout the time period in north and northeastern fringes. Higher fluctuations in groundwater depletion with positive trends directly get influenced with allied land use transitions such as a steady increase in built-up area and steeper depth levels (> 40 mbgl) as observed in central, southwestern, and southern parts. Moreover, buffer peripheries in the proximity of groundwater monitoring stations viz., Hauz Khas, Pushp Vihar, Jamali, Gadaipur, and Bhatti Kalan have observed deeper groundwater levels allied to built-up expansion. Thus, groundwater depletion trends can be ascribed to the incessant conversion of recharging areas into impervious zones along with uneven distribution of groundwater usage and supply. Conversely, expanding vegetative land has also shown improved groundwater depth levels. Therefore, land use influences must be managed in the long run for ensuring sustainable management of groundwater resources.
      (© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
    • References:
      Al-doski, J., Mansor, S. B., & Mohd Shafri, H. Z. (2013). Change detection process and techniques. Civil and Environmental Research, 3(10), 37–45 https://iiste.org/Journals/index.php/CER/article/viewFile/7721/7645.
      Alley, W. M., & Reilley, T. E. (1999). Sustainability of groundwater resources (pp. 11–86). U.S. Geological Survey Circular.
      Arveti, N., Etikala, B., & Dash, P. (2016). Land use/land cover analysis based on various comprehensive geospatial data sets: A case study from Ananthapuramu area, South India. Advances in Remote Sensing, 5(2), 73–82. https://doi.org/10.4236/ars.2016.52006. (PMID: 10.4236/ars.2016.52006)
      Belal, A. A., & Moghanm, F. S. (2011). Detecting urban growth using remote sensing and GIS techniques in Al gharbiya goernorate, Egypt. Egyptian Journal of Remote Sensing and Space Sciences, 14(2), 73–79. https://doi.org/10.1016/j.ejrs.2011.09.001. (PMID: 10.1016/j.ejrs.2011.09.001)
      Calow, R. C., Robins, N. S., MacDonald, A. M., MacDonald, D. M., Gibbs, B. R., Orpen, W. R., Mtembezeka, P., Andrews, A. J., & Appiah, S. O. (1997). Groundwater management in drought-prone areas of Africa. International Journal of Water Resources Development, 13(2), 241–262. (PMID: 10.1080/07900629749863)
      Cao, Y., & Sen Roy, S. (2020). Spatial patterns of seasonal level trends of groundwater in India during 2002–2016. Weather, 75(4), 123–128. (PMID: 10.1002/wea.3370)
      Carmelo, R. F., Giuseppe, M., & Maurizio, P. (2012). Land cover classification and change detection analysis using multi-temporal remotely sensed imagery and landscape metrics. European Journal of Remote Sensing, 45(1), 1–18. https://doi.org/10.5721/EuJRS20124501. (PMID: 10.5721/EuJRS20124501)
      Census of India. (2011). Provisional population totals. Office of Registrar General of India.
      CGWB (2021) Groundwater year book, National Capital Territory, State Unit Office, Delhi. Department of Water Resources, RD & GR, Ministry of Jal Shakti, Government of India. http://cgwb.gov.in/cgwbpnm/public/uploads/documents/1687175475666695213file.pdf.
      Chatterjee, R., Gupta, B. K., Mohiddin, S. K., Shekhar, S., & Purohit, R. (2009). Dynamic groundwater resources of National Capital Territory, Delhi: Assessment, development and management options. Environmental Earth Science, 59, 669–686. (PMID: 10.1007/s12665-009-0064-y)
      Chitsazan, M., Aghazadeh, N., Mirzaee, Y., & Golestan, Y. (2019). Hydrochemical characteristics and the impact of anthropogenic activity on groundwater quality in suburban area of Urmia city, Iran. Environment, Development and Sustainability, 21, 331–351. (PMID: 10.1007/s10668-017-0039-1)
      Choi, B. Y., Yun, S. T., Yu, S. Y., Lee, P. K., Park, S. S., Chae, G. T., & Mayer, B. (2005). Hydrochemistry of urban groundwater in Seoul, South Korea: Effects of land-use and pollutant recharge. Environmental Geology, 48, 979–990. (PMID: 10.1007/s00254-004-1205-y)
      City Forests of Delhi (2022). Forest Department, Government of National Capital Territory of Delhi, India. http://forest.delhigovt.nic.in/city-forests Accessed on 21st March, 2023.
      Commonwealth Legal Information Institute (2004) M.C. Mehta v. Union of India & Ors [2004] INSC184 (18 March 2004). Commonwealth Legal Information Institute, http://www.commonlil.org/in/cases/INSC/2004/184.html.
      Courage, K., Jonah, G., & Hitomi, M. (2013). Monitoring urban spatial growth in Harare Metropolitan Province, Zimbabwe. Advances in Remote Sensing, 2(4), 322–333. https://doi.org/10.4236/ars.2013.24035. (PMID: 10.4236/ars.2013.24035)
      Dash, J. P., Sarangi, A., & Singh, D. K. (2010). Spatial variability of groundwater depth and quality parameters in the National Capital Territory of Delhi. Environmental Management, 45, 640–650. (PMID: 10.1007/s00267-010-9436-z)
      Dwivedi, R. S., Sreenivas, K., & Ramana, K. V. (2005). Cover: Land-use/land-cover change analysis in part of Ethiopia using Landsat Thematic Mapper data. International Journal of Remote Sensing, 26(7), 1285–1287. (PMID: 10.1080/01431160512331337763)
      Elmahdy, S. I., & Mohamed, M. M. (2016). Land use/land cover change impact on groundwater quantity and quality: A case study of Ajman Emirate, the United Arab Emirates, using remote sensing and GIS. Arabian Journal of Geosciences, 9(19), 722. (PMID: 10.1007/s12517-016-2725-y)
      Estoque, R. C., & Murayama, Y. (2015). Intensity and spatial pattern of urban land changes in the megacities of Southeast Asia. Land Use Policy, 48, 213–222. https://doi.org/10.1016/j.landusepol.2015.05.017. (PMID: 10.1016/j.landusepol.2015.05.017)
      Faizan, O. M. (2021). Monitoring land use/land cover change and its impact on variations of land surface temperature rapidly urbanizing island using google earth engine (GEE)-a case study of Delhi, India. Planning Insights Research Paper, 1–25. https://doi.org/10.13140/RG.2.2.14495.84641.
      Feng, S., Kang, S., Huo, Z., Chen, S., & Mao, X. (2008). Neural networks to simulate regional ground water levels affected by human activities. Groundwater, 46(1), 80–90. (PMID: 10.1111/j.1745-6584.2007.00366.x)
      Foster, S. S. D. (2001). The interdependence of groundwater and urbanisation in rapidly developing cities. Urban Water, 3(3), 185–192. (PMID: 10.1016/S1462-0758(01)00043-7)
      Gadrani, L., Lominadze, G., & Tsitsagi, M. (2018). F Assessment of land use/land cover (LULC) change of Tbilisi and surrounding area using remote sensing (RS) and GIS. Annals of Agrarian Science, 16(2), 163–169. https://doi.org/10.1016/j.aasci.2018.02.005. (PMID: 10.1016/j.aasci.2018.02.005)
      Girma, R., Fürst, C., & Moges, A. (2022). Land use land cover change modeling by integrating artificial neural network with cellular Automata-Markov chain model in Gidabo river basin, main Ethiopian rift. Environmental Challenges, 6. https://doi.org/10.1016/j.envc.2021.100419.
      Gupta, P., & Sarma, K. (2016). Spatial distribution of various parameters in groundwater of Delhi, India. Cogent Engineering, 3(1), 1138596. https://doi.org/10.1080/23311916.2016.1138596. (PMID: 10.1080/23311916.2016.1138596)
      He, S., Li, P., Wu, J., Elumalai, V., & Adimalla, N. (2020). Groundwater quality under land use/land cover changes: A temporal study from 2005 to 2015 in Xi’an, northwest China. Human and Ecological Risk Assessment: An International Journal, 26(10), 2771–2797. (PMID: 10.1080/10807039.2019.1684186)
      He, S., & Wu, J. (2019). Relationships of groundwater quality and associated health risks with land use/land cover patterns: A case study in a loess area, northwest China. Human and Ecological Risk Assessment: An International Journal, 25(1-2), 354–373. (PMID: 10.1080/10807039.2019.1570463)
      IPCC. (2001). In J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, & C. A. Johnson (Eds.), Climate change: The scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (p. 881). Cambridge University Press.
      Iqbal, Z. M., & Iqbal, J. M. (2018). Land use detection using remote sensing and GIS (a case study of Rawalpindi Division). American Journal of Remote Sensing, 6(1), 39–51. https://doi.org/10.11648/j.ajrs.20180601.17. (PMID: 10.11648/j.ajrs.20180601.17)
      ISFR (2021) Forest Survey of India (FSI), Ministry of Environment and Forests, GoI https://fsi.nic.in/forest-report-2021.
      ISFR (India State of Forest Report) (2017). Forest Survey of India (FSI), Ministry of Environment and Forests, GoI https://fsi.nic.in/isfr2017/isfr-forest-cover-2017.pdf.
      Jat, M. K., Khare, D., & Garg, P. K. (2009). Urbanization and its impact on groundwater: A remote sensing and GIS-based assessment approach. Environmentalist, 29, 17–32. (PMID: 10.1007/s10669-008-9176-2)
      Kafi, K. M., Shafri, H. Z. M., & Shariff, A. B. M. (2014). An analysis of LULC change detection using remotely sensed data; A case study of Bauchi City. In 7th IGRSM International Remote Sensing & GIS Conference and Exhibition, IOP Conference series: Earth and Environmental Science, 20.
      Kalhor, K., & Emaminejad, N. (2019). Sustainable development in cities: Studying the relationship between groundwater level and urbanization using remote sensing data. Groundwater Sustainable Development, 9, 100243. (PMID: 10.1016/j.gsd.2019.100243)
      Khan, M. A., & Mahorana, P. C. (2002). Use of remote sensing and geographic information system in delineation and characterization of groundwater prospects zones. Indian Journal of Remote Sensing, 30, 131–141. (PMID: 10.1007/BF02990645)
      Kumar, B., Venkatesh, M., Tripathi, A., & Anshumali. (2017). A GIS-based approach in drainage morphometric analysis of Rihand River basin, Central India. Sustainable Water Resource Management, 4, 45–54. (PMID: 10.1007/s40899-017-0118-3)
      Lerner David, N., & Bob, H. (2009). The relationship between land use and groundwater resources and quality. Land Use Policy, 26S, S265–S273. (PMID: 10.1016/j.landusepol.2009.09.005)
      Leta, M. K., Demissie, T. A., & Tränckner, J. (2021). Modeling and prediction of land use land cover change dynamics based on land change modeler (Lcm) in nashe watershed, Upper Blue Nile basin, Ethiopia. Sustainability, 13(7), 3740. https://doi.org/10.3390/su13073740. (PMID: 10.3390/su13073740)
      Li, P., Tian, R., Xue, C., & Wu, J. (2017). Progress, opportunities, and key fields for groundwater quality research under the impacts of human activities in China with a special focus on western China. Environmental Science and Pollution Research, 24, 13224–13234. (PMID: 10.1007/s11356-017-8753-7)
      Liaqat, M. U., Mohamed, M. M., Chowdhury, R., Elmahdy, S. I., Khan, Q., & Ansari, R. (2021). Impact of land use/land cover changes on groundwater resources in Al Ain region of the United Arab Emirates using remote sensing and GIS techniques. Groundwater Sustainable Development, 14, 100587. (PMID: 10.1016/j.gsd.2021.100587)
      Mapani, B. S. (2005). Groundwater and urbanization, risk and mitigation: The case for the city of Windhoek, Namibia. Physics and Chemistry of the Earth, 30, 706–711. (PMID: 10.1016/j.pce.2005.08.011)
      Mas, J. F. (1999). Monitoring land-cover changes: A comparison of change detection technique. 635. International Journal of Remote Sensing, 20, 139–152. (PMID: 10.1080/014311699213659)
      Mishra, N., Khare, D., Gupta, K. K., & Shukla, R. (2014). Impact of land use change on groundwater—A review. Advances in Water Resource and Protection, 2(28), 28–41.
      Moghadam, H. S., & Helbich, M. (2013). Spatiotemporal urbanization processes in the megacity of Mumbai, India: A Markov chains-cellular automata urban growth model. Applied Geography, 40, 140–149. https://doi.org/10.1016/j.apgeog.2013.01.009. (PMID: 10.1016/j.apgeog.2013.01.009)
      Mohiddin, S. K., Shekhar, S., & Kapoor, U. (2006). Enhancing the recharge capabilities of Aravalli ridge in NCT and parts of NCR region of Delhi. In International conference on ground water for sustainable development (pp. 1–4).
      Mustafa, G., Tahsin, Y., & Reis, S. (2007). Using Landsat data to determine land use/land cover changes in Samsun, Turkey. Environmental Monitoring and Assessment, 127(1–3), 155–167. https://doi.org/10.1007/s10661-006-9270-1. (PMID: 10.1007/s10661-006-9270-1)
      NAQUIM (2016). Aquifer mapping and ground water management plan of NCT Delhi, Central Ground Water Board (CGWB), State Unit Office, New Delhi. http://cgwb.gov.in/AQM/NAQUIM_REPORT/Delhi/old/Naquim%20Report%20Delhi%20.pdf Accessed on 24 th February 2023.
      Nath, B., Wang, Z., Ge, Y., Islam, K., Singh, R. P., & Niu, Z. (2020). Land use and land cover change modelling and future potential landscape risk assessment using Markov-CA model and analytical hierarchy process. International Journal of Geo-Information, 9(2), 134. https://doi.org/10.3390/ijgi9020134. (PMID: 10.3390/ijgi9020134)
      NGRI (National Geophysical Research Institute) (2019). Delhi at epicentre of global groundwater crisis. https://timesofindia.indiatimes.com/india/delhi-at-epicentre-of-global-groundwater-crisis-report/articleshow/68131980.cms Accessed on 3 rd March, 2023.
      NRSC (2019). Land use / land cover analysis- third cycle. Technical document on-land use / land cover database for dissemination through Bhuvan land use & cover monitoring division LRUMG Remote Sensing Applications Area National Remote Sensing Centre, Dept. of Space, Govt. of India. Hyderabad https://bhuvan-app1.nrsc.gov.in/2dresources/thematic/LULC503/lulc.pdf.
      Patra, S., Sahoo, S., Mishra, P., & Mahapatra, S. C. (2018). Impacts of urbanization on land use/cover changes and its probable implications on local climate and groundwater level. Journal of Urban Management, 7(2), 70–84. (PMID: 10.1016/j.jum.2018.04.006)
      Radhakrishnan, N., Satish Kumar, E., & Kumar, S. (2014). Analysis of urban sprawl pattern in Tiruchirappalli city using applications of remote sensing and GIS. Arabian Journal Science and Engineering, 39(7), 5555–5563. https://doi.org/10.1007/s13369-014-1099-2. (PMID: 10.1007/s13369-014-1099-2)
      Rapti-Caputo, D. (2010). Influence of climatic changes and human activities on the salinization process of coastal aquifer systems. Italian Journal of Agronomy, 5(s3), 67–80. (PMID: 10.4081/ija.2010.s3.67)
      Ratnaparkhi, N. S., Ajay, D. N., & Bharti, G. (2016). Analysis of land use/land cover changes using remote sensing and GIS techniques in Parbhani city, Maharasthra, India. International Journal of Advanced Remote Sensing and GIS, 5(1), 1702–1708. https://doi.org/10.23953/cloud.ijarsg.54. (PMID: 10.23953/cloud.ijarsg.54)
      Roy, S. S., Rahman, A., Ahmed, S., & Ahmad, I. A. (2022). Long-term trends of groundwater level variations in response to local level land use land cover changes in Mumbai, India. Groundwater Sustainable Development, 18, 100797. (PMID: 10.1016/j.gsd.2022.100797)
      Roy, S. S., Rahman, A., Ahmed, S., Shahfahad, & Ahmed, I. A. (2020). Alarming groundwater depletion in the Delhi Metropolitan region: A long-term assessment. Environmental Monitoring and Assessment, 192(620), 1–14. https://doi.org/10.1007/s10661-020-08585-8. (PMID: 10.1007/s10661-020-08585-8)
      Shanmugam, T., & Rajagopalan, B. (2013). Urban change detection based on remote sensing and GIS study of Salem revenue division, Salem District, Tamilnadu, India. European Journal of Geography, 4(3), 50–59.
      Siddik, M. S., Tulip, S. S., Rahman, A., Islam, M. N., Haghighi, A. T., & Mustafa, S. M. T. (2022). The impact of land use and land cover change on groundwater recharge in northwestern Bangladesh. Journal of Environmental Management, 315, 115130. (PMID: 10.1016/j.jenvman.2022.115130)
      Singh, R., Biswakarma, P., Joshi, V., Joshi, S., & Chaudhary, A. (2023). Spatiotemporal change analysis of land use/land cover in NCT of Delhi, India using geospatial technology. Proceedings of the Indian National Science Academy, 89, 189–200. https://doi.org/10.1007/s43538-023-00152-2. (PMID: 10.1007/s43538-023-00152-2)
      Singh, S., & Sarma, K. (2020). Mapping surface soil characteristics of barren land by using geospatial technology in NCT of Delhi. Society for Environment and Development (India), 15, 15–27.
      Sivakarun, N., Chidambaram, S., Thivya, C., Udayaganesan, P., Paramaguru, P., Pradeep, K., Ganesh, N., & Anandhan, P. (2016). GIS based approach to understand the factors influencing the water level of the coastal aquifers in the ramnad district, Tamilnadu, India. International Journal of Advanced Geosciences, 4(2), 54–61. (PMID: 10.14419/ijag.v4i2.6228)
      Sreedhar, Y., Najaraju, A., & Krishna, G. M. (2016). An Appraisal of land use/land cover change scenari of Tummalapalle, Cuddapah region, India-A remote sensing, and GIS perspective. Advances in Remote Sensing, 5(4), 232–245. https://doi.org/10.4236/ars.2016.54019. (PMID: 10.4236/ars.2016.54019)
      Srinivasan, V., Seto, K. C., Emerson, R., & Gorelick, S. M. (2013). The impact of urbanization on water vulnerability: A coupled human–environment system approach for Chennai, India. Global Environmental Change, 23(1), 229–239. (PMID: 10.1016/j.gloenvcha.2012.10.002)
      Sudhira, H. S., Ramachandra, T. V., & Jagadish, K. S. (2004). Urban sprawl: Metrics, dynamics and modelling using GIS. International Journal of Applied Earth Observation and Geoinformatics, 5, 29–39. (PMID: 10.1016/j.jag.2003.08.002)
      Talukdar, S., Rihan, M., Hang, H. T., Bhaskaran, S., & Rahman, A. (2022). Modelling urban heat island (UHI) and thermal field variation and their relationship with land use indices over Delhi and Mumbai metro cities. Environment, Development and Sustainability, 24(3), 3762–3790. https://doi.org/10.1007/s10668-021-01587-7. (PMID: 10.1007/s10668-021-01587-7)
      The Times of India (2021). How Delhi’s water tables are going deeper underground: Report. https://timesofindia.indiatimes.com/city/delhi/how-citys-water-tables-are-going-deeper-underground/articleshow/84488045.cms Accessed on 2nd March 2023.
      The Times of India (2022). Groundwater rises in some areas, but Delhi loses overall: Report. https://timesofindia.indiatimes.com/city/delhi/groundwater-rises-in-some-areas-but-city-loses-overall/articleshow/89858952.cms Accessed on 2nd March 2023.
      Tyagi, S., & Sarma, K. (2021). Seasonal variability, index modeling and spatiotemporal profiling of groundwater usability in semi-urban region of western Uttar Pradesh, India. Environmental Earth Sciences, 80(761), 761. https://doi.org/10.1007/s12665-021-10018-9. (PMID: 10.1007/s12665-021-10018-9)
      Wentz, E. A., Nelson, D., Rahman, A., Stefanov, W. L., & Sen Roy, S. (2008). Expert system classification of urban land use/cover for Delhi, India. International Journal of Remote Sensing, 29, 4405–4427. https://doi.org/10.1080/01431160801905497.r. (PMID: 10.1080/01431160801905497.r)
      Xu, F., Li, P., Chen, W., He, S., Li, F., Mu, D., & Elumalai, V. (2022). Impacts of land use/land cover patterns on groundwater quality in the Guanzhong basin of northwest China. Geocarto International, 37(27), 16769–16785. (PMID: 10.1080/10106049.2022.2115153)
      Zhang, Y. K., & Schilling, K. E. (2006). Increasing streamflow and baseflow in the Mississippi River since 1940s: Effect of land use change. Journal of Hydrology, 324, 412–422. (PMID: 10.1016/j.jhydrol.2005.09.033)
    • Contributed Indexing:
      Keywords: Depth to water levels; Geospatial techniques; Groundwater; Land use dynamics; National Capital Territory Delhi; South Delhi
    • الرقم المعرف:
      059QF0KO0R (Water)
    • الموضوع:
      Date Created: 20230909 Date Completed: 20230911 Latest Revision: 20231017
    • الموضوع:
      20231017
    • الرقم المعرف:
      10.1007/s10661-023-11675-y
    • الرقم المعرف:
      37688611