Item request has been placed!
×
Item request cannot be made.
×

Processing Request
Performance of radiomics-based artificial intelligence systems in the diagnosis and prediction of treatment response and survival in esophageal cancer: a systematic review and meta-analysis of diagnostic accuracy.
Item request has been placed!
×
Item request cannot be made.
×

Processing Request
- معلومة اضافية
- المصدر:
Publisher: Oxford University Press Country of Publication: United States NLM ID: 8809160 Publication Model: Print Cited Medium: Internet ISSN: 1442-2050 (Electronic) Linking ISSN: 11208694 NLM ISO Abbreviation: Dis Esophagus Subsets: MEDLINE
- بيانات النشر:
Publication: 2017- : New York : Oxford University Press
Original Publication: Milano : Masson, 1988-
- الموضوع:
- نبذة مختصرة :
Radiomics can interpret radiological images with more detail and in less time compared to the human eye. Some challenges in managing esophageal cancer can be addressed by incorporating radiomics into image interpretation, treatment planning, and predicting response and survival. This systematic review and meta-analysis provides a summary of the evidence of radiomics in esophageal cancer. The systematic review was carried out using Pubmed, MEDLINE, and Ovid EMBASE databases-articles describing radiomics in esophageal cancer were included. A meta-analysis was also performed; 50 studies were included. For the assessment of treatment response using 18F-FDG PET/computed tomography (CT) scans, seven studies (443 patients) were included in the meta-analysis. The pooled sensitivity and specificity were 86.5% (81.1-90.6) and 87.1% (78.0-92.8). For the assessment of treatment response using CT scans, five studies (625 patients) were included in the meta-analysis, with a pooled sensitivity and specificity of 86.7% (81.4-90.7) and 76.1% (69.9-81.4). The remaining 37 studies formed the qualitative review, discussing radiomics in diagnosis, radiotherapy planning, and survival prediction. This review explores the wide-ranging possibilities of radiomics in esophageal cancer management. The sensitivities of 18F-FDG PET/CT scans and CT scans are comparable, but 18F-FDG PET/CT scans have improved specificity for AI-based prediction of treatment response. Models integrating clinical and radiomic features facilitate diagnosis and survival prediction. More research is required into comparing models and conducting large-scale studies to build a robust evidence base.
(© The Author(s) 2023. Published by Oxford University Press on behalf of International Society for Diseases of the Esophagus.)
- References:
Technol Cancer Res Treat. 2021 Jan-Dec;20:15330338211034284. (PMID: 34387104)
Insights Imaging. 2020 Aug 12;11(1):91. (PMID: 32785796)
Sci Rep. 2018 Jul 2;8(1):9902. (PMID: 29967326)
Med Image Anal. 2021 Feb;68:101909. (PMID: 33341494)
JAMA Netw Open. 2020 Sep 1;3(9):e2015927. (PMID: 32910196)
J Healthc Eng. 2022 Mar 24;2022:4034404. (PMID: 35368956)
Ann Nucl Med. 2021 Sep;35(9):1030-1037. (PMID: 34106428)
J Nucl Med. 2016 May;57(5):691-700. (PMID: 26795288)
Front Oncol. 2020 Aug 11;10:1398. (PMID: 32850451)
Int J Radiat Oncol Biol Phys. 2013 Apr 1;85(5):1375-82. (PMID: 23219566)
Eur Radiol. 2019 Jan;29(1):392-400. (PMID: 29922924)
PLoS One. 2015 Sep 10;10(9):e0137036. (PMID: 26355298)
World J Gastrointest Oncol. 2022 May 15;14(5):989-1001. (PMID: 35646286)
Comput Med Imaging Graph. 2017 Sep;60:42-49. (PMID: 28087102)
J Nucl Med. 2017 May;58(5):723-729. (PMID: 27738011)
J Med Imaging Radiat Oncol. 2021 Feb;65(1):102-111. (PMID: 33258556)
Acta Oncol. 2018 Nov;57(11):1475-1481. (PMID: 30067421)
Radiat Oncol. 2022 Dec 27;17(1):212. (PMID: 36575480)
Eur Radiol. 2018 Jan;28(1):428-436. (PMID: 28770406)
Int J Radiat Oncol Biol Phys. 2021 Nov 15;111(4):926-935. (PMID: 34229050)
J Nucl Med. 2011 Mar;52(3):369-78. (PMID: 21321270)
Phys Med Biol. 2016 Jan 21;61(2):906-22. (PMID: 26738433)
BMJ. 2021 Mar 29;372:n71. (PMID: 33782057)
Eur Radiol. 2019 Nov;29(11):6080-6088. (PMID: 31028447)
Radiology. 2018 Jun;287(3):983-992. (PMID: 29533721)
Phys Med Biol. 2021 Jul 16;66(14):. (PMID: 34192686)
Radiother Oncol. 2020 May;146:9-15. (PMID: 32065875)
Oncotarget. 2017 Nov 06;8(61):104444-104454. (PMID: 29262652)
Front Oncol. 2022 Jul 18;12:892171. (PMID: 35924169)
BMC Cancer. 2021 Oct 30;21(1):1167. (PMID: 34717582)
Radiother Oncol. 2021 Jan;154:6-13. (PMID: 32941954)
Br J Radiol. 2021 Aug 01;94(1124):20210525. (PMID: 34235955)
J Comput Assist Tomogr. 2017 May/Jun;41(3):455-460. (PMID: 27879527)
Insights Imaging. 2022 Jun 17;13(1):104. (PMID: 35715706)
Radiother Oncol. 2019 Apr;133:205-212. (PMID: 30424894)
Front Oncol. 2022 Mar 15;12:861638. (PMID: 35371989)
Eur J Nucl Med Mol Imaging. 2019 Jul;46(7):1478-1484. (PMID: 30919055)
Esophagus. 2021 Jul;18(3):612-620. (PMID: 33635412)
World J Gastroenterol. 2021 Apr 14;27(14):1392-1405. (PMID: 33911463)
Radiat Oncol. 2020 Oct 29;15(1):249. (PMID: 33121507)
Abdom Radiol (NY). 2019 Jun;44(6):2048-2058. (PMID: 30116873)
Dig Endosc. 2021 Nov;33(7):1075-1084. (PMID: 33275789)
Eur J Nucl Med Mol Imaging. 2011 Sep;38(9):1595-606. (PMID: 21559979)
Phys Med Biol. 2018 Jul 19;63(14):145020. (PMID: 29911659)
Front Oncol. 2021 Sep 16;11:700210. (PMID: 34604036)
Diagnostics (Basel). 2021 Jun 07;11(6):. (PMID: 34200332)
Eur Radiol. 2021 May;31(5):3306-3314. (PMID: 33151397)
Ann Surg Oncol. 2022 Mar;29(3):1977-1990. (PMID: 34762214)
Eur J Nucl Med Mol Imaging. 2017 Feb;44(2):206-214. (PMID: 27613542)
Radiology. 1999 Nov;213(2):317-20. (PMID: 10551208)
- Contributed Indexing:
Keywords: esophageal cancers; radiology; robotics
- الرقم المعرف:
0Z5B2CJX4D (Fluorodeoxyglucose F18)
- الموضوع:
Date Created: 20230526 Date Completed: 20240116 Latest Revision: 20240117
- الموضوع:
20250114
- الرقم المعرف:
PMC10789236
- الرقم المعرف:
10.1093/dote/doad034
- الرقم المعرف:
37236811
No Comments.