Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Groundwater quality in Zagora southeast of Morocco by using physicochemical analysis and geospatial techniques.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Springer Country of Publication: Netherlands NLM ID: 8508350 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-2959 (Electronic) Linking ISSN: 01676369 NLM ISO Abbreviation: Environ Monit Assess Subsets: MEDLINE
    • بيانات النشر:
      Publication: 1998- : Dordrecht : Springer
      Original Publication: Dordrecht, Holland ; Boston : D. Reidel Pub. Co., c1981-
    • الموضوع:
    • نبذة مختصرة :
      Groundwater in Morocco is restricted because of the semiarid to arid climatic conditions; it is under threat from organic and inorganic pollution. Furthermore, it is considered the only source of potable water as well as having different usages, making its quantitative and qualitative protection an urgent priority. The present study focused mainly on the anthropogenic impact on the natural resources and groundwater quality around Zagora city. Fifteen samples were collected from wells during rainy and dry seasons in 2 years 2020-2021 and the analysis of the groundwater quality of studied stations. The suitability of the aquifer Fezouata was investigated using drinking and irrigation water quality indices. The results showed that sulfate and chloride are the dominant anions in the groundwater samples. While the mean abundance of major cations is Na +  > Mg 2+  > Ca 2+  > K + , the sodium ion is dominant and K + is the least abundant. The physicochemical parameters show that conductivity, nitrate, and sulfate exceed the limit fixed by WHO. Hydrogeochemical plots indicate that 93% of samples belong to Na-Cl facies and only 7% are mixt Cl-Mg-Ca in 2021, the results are similar except for two samples which are 13% belong Cl-Mg-Ca. The Water Quality Index suggests that 28.55% are good quality water, 23.90-47.55% are poor and very poor quality water, respectively, and 40.24% are unsuitable in 2020. Furthermore, the WQI of the 2021 campaign showed that only 17.48% were considered good quality water and 38.94% (43.58%) were poor or very poor quality water, respectively. However, 33.21% are unsuitable. Based on irrigation indices, the majority of groundwater samples can be used for agricultural purposes, notably those of the upstream part of the study area.
      (© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
    • References:
      Abbasnia, A., Yousefi, N., Mahvi, A. H., Nabizadeh, R., Radfard, M., Yousefi, M., & Alimohammadi, M. (2019). Evaluation of groundwater quality using water quality index and its suitability for assessing water for drinking and irrigation purposes: Case study of Sistan and Baluchistan province (Iran). Human and Ecological Risk Assessment: An International Journal, 25(4), 988–1005. https://doi.org/10.1080/10807039.2018.1458596. (PMID: 10.1080/10807039.2018.1458596)
      Al Alawi, A. M., Majoni, S. W., & Falhammar, H. (2018). Magnesium and human health: Perspectives and research directions. International Journal of Endocrinology, 2018. https://doi.org/10.1155/2018/9041694.
      Al-Mashagbah, A. F. (2015). Assessment of surface water quality of King Abdullah canal, using physico-chemical characteristics and water quality index, Jordan. Journal of Water Resource and Protection, 7(4), 339–352. https://doi.org/10.4236/jwarp.2015.74027. (PMID: 10.4236/jwarp.2015.74027)
      Amiri, V., Rezaei, M., & Sohrabi, N. (2014). Groundwater quality assessment using entropy weighted water quality index (EWQI) in Lenjanat, Iran. Environ-Mental Earth Sciences, 72, 3479–3490. https://doi.org/10.1007/s12665-014-3255-0. (PMID: 10.1007/s12665-014-3255-0)
      Aravinthasamy, P., Karunanidhi, D., Subba Rao, N., Subramani, T., & Srinivasamoorthy, K. (2020). Irrigation risk assessment of groundwater in a non-perennial river basin of South India: implication from irrigation water quality index (IWQI) and geographical information system (GIS) approaches. Arabian Journal of Geosciences, 13, 1–14. https://doi.org/10.1007/s12517-020-06103-1. (PMID: 10.1007/s12517-020-06103-1)
      Bahir, M., Carreira, P. M., Ouhamdouch, S., & Chamchati, H. (2017). Recharge conceptual model and mineralization of groundwater in a semiarid region; Essaouira basin (Morocco). Procedia Earth and Planetary Science, 17, 69–72. https://doi.org/10.1016/j.proeps.2016.12.036. (PMID: 10.1016/j.proeps.2016.12.036)
      Bahrami, M., & Zarei, A. R. (2023). Assessment and modeling of groundwater quality for drinking, irrigation, and industrial purposes using water quality indices and GIS technique in fasarud aquifer (Iran). Modeling Earth Systems and Environment, 1–15.
      Barakat, A., Meddah, R., Afdali, M., & Touhami, F. (2018). Physicochemical and microbial assessment of spring water quality for drinking supply in Piedmont of Béni-Mellal Atlas (Morocco). Physics and Chemistry of the Earth, Parts A/B/C, 104, 39–46. https://doi.org/10.1016/j.pce.2018.01.006. (PMID: 10.1016/j.pce.2018.01.006)
      Ben, A. M., Zemni, T., Mamou, A., & Zargouni, F. (2014). Acquisition de salinité et qualité des eaux d’une nappe profonde en Tunisie: Approche statistique et géochimique. Hydrological Sciences Journal, 59(2), 395–419. https://doi.org/10.1080/02626667.2013.870663. (PMID: 10.1080/02626667.2013.870663)
      Bora, M., & Goswami, D. C. (2017). Water quality assessment in terms of water quality index (WQI): case study of the Kolong River, Assam, India. Applied Water Science, 7, 3125–3135. https://doi.org/10.1007/s13201-016-0451-y. (PMID: 10.1007/s13201-016-0451-y)
      Boudellah, A., El Moustaine, R., Maliki, A., Moutaouakil, S., El Gharmali, A., Boulanouar, M., ... & Ghamizi, M. (2022). Impacts of anthropogenic factors on the groundwater ecosystem of Fezouata in south-east of Morocco. Journal of Ecological Engineering, 23(5). https://doi.org/10.12911/22998993/146678.
      Bouslah, S., Djemili, L., & Houichi, L. (2017). Water quality index assessment of Koudiat Medouar Reservoir, northeast Algeria using weighted arithmetic index method. Journal of Water and Land Development, 35, 221–228. https://doi.org/10.1515/jwld-2017-0087. (PMID: 10.1515/jwld-2017-0087)
      Brown, R. M., McClelland, N. I., Deininger, R. A., & Tozer, R. G. (1970). A water quality index: Do we dare? Water and Sewage Works, 117, 339–343.
      Cherkaoui, H. D., Moussadek, R., & Sahbi, H. (2007). Apport des techniques géo-spatiales pour la caractérisation de la qualite des eaux sous-terraines des oasis de la vallée du Draa-cas de la nappe de Fezouata. Options Méditerranéennes: Série B. Etudes et Recherches, 2(56), 295.
      Chung, S. Y., Kim, T. H., & Park, N. (2012). The influence of the surrounding groundwater by groundwater discharge from the subway tunnel at Suyeong District, Busan City. Journal of Soil and Groundwater Environment, 17, 28–36. https://doi.org/10.7857/JSGE.2012.17.2.028. (PMID: 10.7857/JSGE.2012.17.2.028)
      Comly, H. H. (1945). Cyanosis in infants caused by nitrates in well water. Journal of the American Medical Association, 129, 112. https://doi.org/10.1001/jama.1945.02860360014004. (PMID: 10.1001/jama.1945.02860360014004)
      Cude, C. (2001). Oregon water quality index: A tool for evaluating water quality management effectiveness. Journal of the American Water Resources Association, 37, 125–137. https://doi.org/10.1111/j.1752-1688.2001.tb05480.x. (PMID: 10.1111/j.1752-1688.2001.tb05480.x)
      Dahan S. 2017. Gestion de la Rareté de l’Eau en Milieu Urbain au Maroc [Internet]. Banque mondiale report, Washington DC. http://documents1.worldbank.org/curated/ru/488091516133312338/pdf/.
      Davis, S. N., & Dewiest, R. J. (1966). Hydrology. New York: John Wiley and Sons Inc.
      Dawood, A. S., Jabbar, M. T., Al-Tameemi, H. H., & Baer, E. M. (2022). Application of water quality index and multivariate statistical techniques to assess and predict of groundwater quality with aid of geographic information system. Journal of Ecological Engineering, 23(6).
      Doneen, L. D. (1964). Notes on water quality in Agriculture, Paper (4001st ed.). Published as a Water Science and Engineering.
      Egbueri, J. C. (2018). Assessment of the quality of groundwaters proximal to dumpsites in Awka and Nnewi metropolises: A comparative approach. International Journal of Energy and Water Resources. https://doi.org/10.1007/s42108-018-0004-1. (PMID: 10.1007/s42108-018-0004-1)
      Egbueri, J. C. (2022). Predicting and analysing the quality of water resources for industrial purposes using integrated data-intelligent algorithms. Groundwater for Sustainable Development, 18, 100794.
      Egbueri, J. C., & Agbasi, J. C. (2022a). Combining data-intelligent algorithms for the assessment and predictive modeling of groundwater resources quality in parts of southeastern Nigeria. Environmental Science and Pollution Research, 29(38), 57147–57171. https://doi.org/10.1007/s11356-022-19818-3. (PMID: 10.1007/s11356-022-19818-3)
      Egbueri, J. C., & Agbasi, J. C. (2022b). Data-driven soft computing modeling of groundwater quality parameters in southeast Nigeria: comparing the performances of different algorithms. Environmental Science and Pollution Research, 29(25), 38346–38373. (PMID: 10.1007/s11356-022-18520-8)
      Egbueri, J. C., Enyigwe, M. T., & Ayejoto, D. A. (2022). Modeling the impact of potentially harmful elements on the groundwater quality of a mining area (Nigeria) by integrating NSFWQI, HERisk code, and HCs. Environmental Monitoring and Assessment, 194(3), 150. https://doi.org/10.1007/s10661-022-09789-w. (PMID: 10.1007/s10661-022-09789-w)
      Egbueri, J. C., Mgbenu, C. N., Digwo, D. C., & Nnyigide, C. S. (2021). A multi-criteria water quality evaluation for human consumption, irrigation and industrial purposes in Umunya area, southeastern Nigeria. International Journal of Environmental Analytical Chemistry, 1–25.
      El Moustaine, R. M., Chahlaoui, A., Maliki, A., & Boudellah, A. (2021). Assessment and modeling of groundwater quality by using water quality index (WQI) and GIS technique in meknes aquifer (Morocco). Geology, Ecology, and Landscapes, 1–13. https://doi.org/10.1080/24749508.2021.1944797.
      Ganyaglo, S. Y., Benoeng-Yakubo, B., Osae, S., Dampare, S. B., Fianko, J. R., & Bhuiyan, M. A. H. (2010). Hydrochemical and isotopic characterisation of groundwaters in the eastern region of Ghana. Journal of Water Resource and Protection, 2, 199–208. https://doi.org/10.4236/jwarp.2010.23022. (PMID: 10.4236/jwarp.2010.23022)
      Gao, Z., Liu, J., Xu, X., Wang, Q., Wang, M., Feng, J., & Fu, T. (2020). Temporal variations of spring water in Karst Areas: A case study of Jinan spring area northern, China. Water, 12(4), 1009. https://doi.org/10.3390/w12041009. (PMID: 10.3390/w12041009)
      Gibbs, RJ. (1970). American Association for the Advancement of Science, 170, 1088. https://doi.org/10.1126/science.172.3985.871.
      Gugulothu, S., Subbarao, N., Das, R., & Dhakate, R. (2022). Geochemical evaluation of groundwater and suitability of groundwater quality for irrigation purpose in an agricultural region of South India. Applied Water Science, 12(6), 142. https://doi.org/10.1007/s13201-022-01583-w. (PMID: 10.1007/s13201-022-01583-w)
      Habbeb, M. G., Sulyman, M. H., & Jumaah, H. J. (2022). Modeling water quality index using geographic information systems and weighted arithmetic index in Kirkuk, Iraq. Pollution Research Paper, 41, 323–327. https://doi.org/10.53550/PR.2022.v41i01.047.
      HemaLatha, T., Pradeep Kumar, G. N., Lakshminarayana, P., & Anil, A. (2012). Assessment of groundwater quality index for upper Pincha Basin, Chittoor District, Andhra Pradesh, India using GIS. International Journal of Scientific and Engineering Research, 3(7), 1–8.
      High Commission for Planning of Morocco. (2014). Statistical year book. Retrieved April 5, 2023, from https://rgph2014.hcp.ma.
      Horton, R. K. (1965). An index number system for rating water quality. Journal of the Water Pollution Control Federation, 37, 300–306.
      Jain, C. K., Kumar, C. P., & Sharma, M. K. (2003). Groundwater qualities of Ghataprabha command area Karnataka, Indian. Journal Environ and Ecoplan, 7(2), 251–262.
      Jubouri, M. H. S. S (2009). An environmental and diagnostic study of algae in a cross section of the Tigris River within the province of Salah al-Din [Master Thesis / Faculty of Science, University of Tikrit].  https://doi.org/10.1088/1757-899X/454/1/012102.
      Jumaah, H. J., Ameen, M. H., Mohamed, G. H., & Ajaj, Q. M. (2022). Monitoring and evaluation Al-Razzaza lake changes in Iraq using GIS and remote sensing technology. The Egyptian Journal of Remote Sensing and Space Science, 25(1), 313–321. https://doi.org/10.1016/j.ejrs.2022.01.013. (PMID: 10.1016/j.ejrs.2022.01.013)
      Jumaah, H. J., Kalantar, B., Ueda, N., Sani, O. S., Ajaj, Q. M., & Jumaah, S. J. (2021, July). The Effect of war on land use dynamics in Mosul Iraq using remote sensing and GIS techniques. In 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS (pp. 6476–6479). IEEE. https://doi.org/10.1109/IGARSS47720.2021.9553165.
      Karanth, K. R. (1987). Ground water assessment, development and management (p. 720). New Delhi: TataMcGraw-Hill Pub. Co., Ltd.
      Karmakar, B., Singh, M. K., Choudhary, B. K., Singh, S. K., Egbueri, J. C., Gautam, S. K., & Rawat, K. S. (2021). Investigation of the hydrogeochemistry, groundwater quality, and associated health risks in industrialized regions of Tripura, northeast India. Environmental Forensics, 1–22. https://doi.org/10.1080/15275922.2021.2006363.
      Karmaoui, A., Ben Salem, A., El Jaafari, S., Chaachouay, H., Moumane, A., & Hajji, L. (2022). Exploring the land use and land cover change in the period 2005–2020 in the province of Errachidia, the pre-sahara of Morocco. Frontiers in Earth Science, 10.
      Karmaoui, A., Ifaadassan, I., Babqiqi, A., Messouli, M., & Khebiza, M. Y. (2016). Analysis of the water supply-demand relationship in the Middle Draa Valley, Morocco, under climate change and socio-economic scenarios. Journal of Scientific Research Report, 9(4), 1–10. https://doi.org/10.9734/JSRR/2016/21536. (PMID: 10.9734/JSRR/2016/21536)
      Kaviarasan, M., Geetha, P., & Soman, K. P. (2016). GIS-based ground water quality monitoring in Thiruvannamalai District, Tamil Nadu, India. In Proceedings of the International Conference on Soft Computing Systems: ICSCS 2015 (Vol. 1, pp. 685–700). Springer India. https://doi.org/10.1007/978-81-322-2671-0_65.
      Kelley, W. P. (1963). Use of saline irrigation water. Soil Science, 95, 355–391. (PMID: 10.1097/00010694-196306000-00003)
      Ketata, M., Gueddari, M., & Bouhlila, R. (2012). Use of geographical information system and water quality index to assess groundwater quality in El Khairat deep aquifer (Enfidha, Central East Tunisia). Arabian Journal of Geosciences, 5, 1379–1390. https://doi.org/10.1007/s12517-011-0292-9. (PMID: 10.1007/s12517-011-0292-9)
      Kumar, A., & Dua, A. (2009). Water quality index for assessment of water quality of River Ravi at Madhopur, India. Global Journal of Environmental Sciences, 8(1), 49–57. https://doi.org/10.4314/gjes.v8i1.50824. (PMID: 10.4314/gjes.v8i1.50824)
      Laishram, R. J., Yumnam, G., & Alam, W. (2022). Assessment of ecohydrogeochemical status of freshwater Loktak Lake of Manipur, India. Environmental Monitoring and Assessment, 194(9), 1–31. https://doi.org/10.1007/s10661-022-10336-w. (PMID: 10.1007/s10661-022-10336-w)
      Lasagna, M., De Luca, D. A., Debernardi, L., & Clemente, P. (2013). Effect of the dilution process on the attenuation of contaminants in aquifers. Environmental Earth Sciences, 70(6), 2767–2784. https://doi.org/10.1007/s12665-013-2336-9. (PMID: 10.1007/s12665-013-2336-9)
      Li, P., & Wu, J. (2019). Drinking water quality and public health. Exposure and Health, 11, 73–79. https://doi.org/10.1007/s12403-019-00299-8. (PMID: 10.1007/s12403-019-00299-8)
      Liu, F., Zhao, Z., Yang, L., Ma, Y., Li, B., Gong, L., & Liu, H. (2020). Phreatic water quality assessment and associated hydrogeochemical processes in an irrigated region along the Upper Yellow River, northwestern China. Water, 12(2), 463. https://doi.org/10.3390/w12020463. (PMID: 10.3390/w12020463)
      L'vovich, M. I. (1974). World water resources and their future. In Russian; English edition edited by R. L. Nace, 1979, American Geophysical Union, Washington, DC. 415 p.
      Madhav, S., Ahamad, A., Kumar, A., Kushawaha, J., Singh, P., & Mishra, P. K. (2018). Geochemical assessment of groundwater quality for its suitability for drinking and irrigation purpose in rural areas of Sant Ravidas Nagar (Bhadohi), Uttar Pradesh. Geology, Ecology, and Landscapes, 2(2), 127–136. https://doi.org/10.1080/24749508.2018.1452485. (PMID: 10.1080/24749508.2018.1452485)
      Mgbenu, C. N., & Egbueri, J. C. (2019). The hydrogeochemical signatures, quality indices and health risk assessment of water resources in Umunya district, southeast Nigeria. Applied Water Science, 9(1), 22. https://doi.org/10.1007/s13201-019-0900-5. (PMID: 10.1007/s13201-019-0900-5)
      Majumdar, D., & Gupta, N. (2000). Nitrate pollution of groundwater and associated human health disorders. Indian Journal of Environmental Health, 42, 28–39.
      Moumane, A., El Ghazali, F. E., Al Karkouri, J., Delorme, J., Batchi, M., Chafiki, D., & Karmaoui, A. (2021). Monitoring spatiotemporal variation of groundwater level and salinity under land use change using integrated field measurements, GIS, geostatistical, and remote-sensing approach: case study of the Feija aquifer, Middle Draa watershed, Moroccan Sahara. Environmental Monitoring and Assessment, 193, 1–21. (PMID: 10.1007/s10661-021-09581-2)
      Murali, K., & Elangovan, R. (2013). Assessment of groundwater vulnerability in Coimbatore South Taluk, Tamilnadu, India using DRASTIC approach. International Journal of Scientific and Research Publications, 3(6), 1.
      Nag, S. K. (2009). Quality of groundwater in parts of ARSA block, Purulia District, West Bengal. Bhu-Jal, 4(1), 58–64.
      Nagaraju, A., Suresh, S., Killham, K., & Hudson-Edwards, K. (2006). Hydrogeochemistry of waters of manampeta barite mining area Cuddapah Basin, Andhra Pradesh India. Journal Turkish Journal Engineering Environmental Science, 30, 203–219.
      Ouzerbane, Z., Loulida, S., Boughalem, M., Hmaidi, A. E., Essahlaoui, A., & Najine, A. (2022). Application of GIS for assessing the vulnerability of aquifers to pollution in the coastal zone of Essaouira, Morocco. Environmental Monitoring and Assessment, 194, 1–18. (PMID: 10.1007/s10661-021-09673-z)
      Pattnaik, S., & Reddy, M. V. (2010). Assessment of municipal solid waste management in Puducherry (Pondicherry), India. Resources, Conservation and Recycling, 54(8), 512–520. https://doi.org/10.1016/j.resconrec.2009.10.008. (PMID: 10.1016/j.resconrec.2009.10.008)
      Pei-Yue, L., Hui, Q., & Jian-Hua, W. (2010). Groundwater quality assessment based on improved water quality index in Pengyang Plain, Ningxia, northwest China. E-Journal of Chemistry, 7, 209–216. https://doi.org/10.1155/2010/451304. (PMID: 10.1155/2010/451304)
      Pradhan, S. K., Patnaik, D., & Rout, S. P. (2001). Groundwater quality index for groundwater around a phosphatic fertilizers plant. Indian Journal of Environmen-Tal Protection, 21, 355–358.
      Prasanth, S. S., Magesh, N. S., Jitheshlal, K. V., Chandrasekar, N., & Gangadhar, K. (2012). Evaluation of groundwater quality and its suitability for drinking and agricultural use in the coastal stretch of Alappuzha District, Kerala, India. Applied Water Science, 2, 165–175. https://doi.org/10.1007/s13201-012-0042-5. (PMID: 10.1007/s13201-012-0042-5)
      Pravina, P., Sayaji, D., & Avinash, M. (2013). Calcium and its role in human body. International Journal of Research in Pharmaceutical and Biomedical Sciences, 4(2), 659–668.
      Rabeiy, R. E. (2018). Assessment and modeling of groundwater quality using WQI and GIS in Upper Egypt area. Environmental Science and Pollution Research, 25, 30808–30817. (PMID: 10.1007/s11356-017-8617-1)
      Raghunath, H. M. (1987). Ground water, Vilely Easteren Ltd., New Delhi, India, 2nd edition. https://doi.org/10.1155/2020/6924026.
      Ramakrishnaiah, C. R., Sadashivaiah, C., & Ranganna, G. (2009). Assessment of Water Quality Index for the Groundwater in Tumkur Taluk, Karnataka State, India. E-Journal of Chemistry, 6, 523–530. https://doi.org/10.1155/2009/757424. (PMID: 10.1155/2009/757424)
      Ramirez, I., Alves, D. E., Kuchler, P. C., Madalena, I. R., Lima, D. C. D., Barbosa, M. C. F., ... & Oliveira, D. S. B. D. (2023). Geographic Information Systems (GIS) to assess dental caries, overweight and obesity in schoolchildren in the city of Alfenas, Brazil. International Journal of Environmental Research and Public Health, 20(3), 2443. (PMID: 10.3390/ijerph20032443)
      Rao, N. S., Das, R., & Gugulothu, S. (2022a). Understanding the factors contributing to groundwater salinity in the coastal region of Andhra Pradesh, India. Journal of Contaminant Hydrology, 250, 104053. https://doi.org/10.1016/j.jconhyd.2022.104053.
      Rao, N. S., Dinakar, A., Sravanthi, M., & Kumari, B. K. (2021). Geochemical characteristics and quality of groundwater evaluation for drinking, irrigation, and industrial purposes from a part of hard rock aquifer of South India. Environmental Science and Pollution Research, 28, 31941–31961. https://doi.org/10.1007/s11356-021-12404-z. (PMID: 10.1007/s11356-021-12404-z)
      Rao, N. S., Sunitha, B., Das, R., & Kumar, B. A. (2022b). Monitoring the causes of pollution using groundwater quality and chemistry before and after the monsoon. Physics and Chemistry of the Earth, Parts a/b/c, 103228. https://doi.org/10.1016/j.pce.2022.103228.
      Ravindra, B., Subba Rao, N., & Dhanamjaya Rao, E. N. (2022). Groundwater quality monitoring for assessment of pollution levels and potability using WPI and WQI methods from a part of Guntur district, Andhra Pradesh, India. Environment, Development and Sustainability, 1–31. https://doi.org/10.1007/s10668-022-02689-6.
      Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils (Vol. 78, No. 2, p. 154). LWW.
      Rodier, J., Legube, B., Merlet, N., Brunet, R., Mialocq, J. C., & Leroy, P. (2009). L’analyse de l’eau-9e éd. Eaux naturelles, eaux résiduaires, eau de mer. Dunod, 564–571.
      Rokbani, M. K., Gueddari, N., & Bouhlila, R. (2011). Use of geographical information system and water quality index and assess ground water quality in EIKhairat Deep Aquifer (Enfidha, Tunisian Sahel). Iranica Journal of Energy and Environment, 2(2), 133–144.
      Saeedi, M., Abessi, O., Sharifi, F., & Meraji, M. (2010). Development of groundwater quality index. Environmental Monitoring and Assessment, 163(1), 327–335. https://doi.org/10.1007/s10661-009-0837-5. (PMID: 10.1007/s10661-009-0837-5)
      Schwartz, P. D. F. (1990). Physical and Chemical Hydrogeology Wiley.
      Sehar, S., Naz, L., Ali, M. I., & Ahmed, S. (2011). Monitoring of physico-chemical and microbiological analysis of under ground water samples of District Kallar Syedan, Rawalpindi-Pakistan. Research Journal of Chemical Sciences, 1(8), 24–30.
      Shigut, D. A., Liknew, G., Irge, D. D., & Ahmad, T. (2017). Assessment of physico-chemical quality of borehole and spring water sources supplied to Robe Town, Oromia region, Ethiopia. Applied Water Science, 7, 155–164. https://doi.org/10.1007/s13201-016-0502-4. (PMID: 10.1007/s13201-016-0502-4)
      Shim, B. Y., Chung, S. Y., Kim, H. J., Sung, I. H., & Kim, B. W. (2002). Characteristics of sea water intrusion using geostatistical analysis of geophysical surveys at the southeastern coastal area of Busan, Korea. Journal of Soil and Groundwater Environment, 7, 3–17. https://doi.org/10.4236/gep.2017.56010. (PMID: 10.4236/gep.2017.56010)
      Singh, S. K., & Noori, A. R. (2022). Groundwater quality assessment and modeling utilizing water quality index and GIS in Kabul Basin, Afghanistan. Environmental Monitoring and Assessment, 194(10), 1–19. https://doi.org/10.1007/s10661-022-10340-0. (PMID: 10.1007/s10661-022-10340-0)
      Singh, S. K., Srivastav, P. K., Singh, D., Han, D., Gautam, S. K., & Pande, A. C. (2015). Modeling ground water quality over a humid subtropical region using numerical indices, earth observation datasets and X ray diffraction techniques, A case study of Allahabad district India. Environmental Geochemical Health, 37(1), 157–180. https://doi.org/10.1155/2020/6924026. (PMID: 10.1155/2020/6924026)
      Srinivasamoorthy, K., Chidambaram, S., Prasanna, M. V., Vasanthavihar, M., Peter, J., & Anandhan, P. (2008). Identification of major sources controlling groundwater chemistry from a hard rock terrain—A case study from Mettur taluk, Salem district, Tamil Nadu, India. Journal of Earth System Science, 117(1), 49–58. https://doi.org/10.1007/s12040-008-0012-3.
      Štambuk-Giljanović, N. (1999). Water quality evaluation by index in Dalmatia. Water Resources, 33, 3423–3440. https://doi.org/10.1016/S0043-1354(99)00063-9. (PMID: 10.1016/S0043-1354(99)00063-9)
      Subba Rao, N. (2021). Spatial distribution of quality of groundwater and probabilistic non-carcinogenic risk from a rural dry climatic region of South India. Environmental Geochemistry and Health, 43(2), 971–993. https://doi.org/10.1007/s10653-020-00621-3. (PMID: 10.1007/s10653-020-00621-3)
      Szabolcs, I., & Darab, K. (1964). Radio-Active technique for examining the improving effect of CaCO3 on alkali (Szik) soils. Acta Agronomica Hungarica, 13, 93–101.
      Tayfur, G., Kirer, T., & Baba, A. (2008). Groundwater quality and hydrogeochemical properties of Torbali Region, Izmir, Turkey. Environmental Monitoring and Assessment, 146, 157–169. https://doi.org/10.1007/s10661-007-0068-6. (PMID: 10.1007/s10661-007-0068-6)
      Thirumurthy, S., Jayanthi, M., Samynathan, M., Duraisamy, M., Kabiraj, S., & Anbazhahan, N. (2022). Multi-criteria coastal environmental vulnerability assessment using analytic hierarchy process based uncertainty analysis integrated into GIS. Journal of Environmental Management, 313, 114941.
      Todd, D. K. (1980). Groundwater hydrology (2nd ed., p. 70). Wiley.
      Trivedy, R. K., & Goel, P. K. (1984). Chemical and biological methods for water pollution studies (pp. 1–211). Environmental Publications.
      UNEP/GEMS. (2007). Water quality outlook (p. 58). United Nations Environmental Programme (UNEP)/Global Environmental Monitoring System (GEMS)/Water Programme.
      Unigwe, C. O., Egbueri, J. C., & Omeka, M. E. (2022). Geospatial and statistical approaches to nitrate health risk and groundwater quality assessment of an alluvial aquifer in SE Nigeria for drinking and irrigation purposes. Journal of the Indian Chemical Society, 99(6), 100479. https://doi.org/10.1016/j.jics.2022.100479.
      Warner, N., Lgourna, Z., Bouchaou, L., Boutaleb, S., Tagma, T., Hsaissoune, M., & Vengosh, A. (2013). Integration of geochemical and isotopic tracers for elucidating water sources and salinization of shallow aquifers in the sub-Saharan Drâa Basin, Morocco. AppliedGeochemistry, 34, 140–151. https://doi.org/10.1016/j.apgeochem.2013.03.005. (PMID: 10.1016/j.apgeochem.2013.03.005)
      Watson, R. R., Preedy, V. R., & Zibadi, S. (Eds.). (2012). Magnesium in human health and disease. Springer.
      Wilcox, L. (1955). Classification and use of irrigation water. Circular. No. 969. Washington, DC, USA. USDA, 19.
      World Health Organisation (WHO). (2011). Guidelines for drinking water quality (4th ed.). World Health Organization (WHO) chronicle, 38(4), 104–108, Geneva, pp. 224–334.
      World Health Organisation (WHO). (2017). Guidelines for drinking-water quality: First addendum to the (4th ed.). WHO.
      Wynn, E., Krieg, M. A., Lanham-New, S. A., & Burckhardt, P. (2010). Postgraduate symposium positive influence of nutritional alkalinity on bone health: Conference on ‘over-and undernutrition: Challenges and approaches. Proceedings of the Nutrition Society, 69(1), 166–173. https://doi.org/10.1017/S002966510999173X. (PMID: 10.1017/S002966510999173X)
      Ziani, D., Abderrahmane, B., Boumazbeur, A., & Benaabidate, L. (2017). Water quality assessment for drinking and irrigation using major ions chemistry in the semiarid region: Case of Djacer Spring, Algeria. Asian Journal of Earth Sciences, 10, 9–21. https://doi.org/10.3923/ajes.2017.9.21. (PMID: 10.3923/ajes.2017.9.21)
    • Contributed Indexing:
      Keywords: Drinking water; Groundwater quality; Irrigation; Physicochemical parameters; WQI; Zagora
    • الرقم المعرف:
      0 (Sulfates)
      0 (Chlorides)
      0 (Water Pollutants, Chemical)
      0 (Drinking Water)
    • الموضوع:
      Date Created: 20230429 Date Completed: 20230501 Latest Revision: 20230501
    • الموضوع:
      20250114
    • الرقم المعرف:
      10.1007/s10661-023-11163-3
    • الرقم المعرف:
      37119275