menu
Item request has been placed!
×
Item request cannot be made.
×

A bacterial cold-active dye-decolorizing peroxidase from an Antarctic Pseudomonas strain.
Item request has been placed!
×
Item request cannot be made.
×

- المؤلفون: Cagide C;Cagide C; Marizcurrena JJ; Marizcurrena JJ; Vallés D; Vallés D; Alvarez B; Alvarez B; Castro-Sowinski S; Castro-Sowinski S; Castro-Sowinski S
- المصدر:
Applied microbiology and biotechnology [Appl Microbiol Biotechnol] 2023 Mar; Vol. 107 (5-6), pp. 1707-1724. Date of Electronic Publication: 2023 Feb 11.- نوع النشر :
Journal Article- اللغة:
English - المصدر:
- معلومة اضافية
- المصدر: Publisher: Springer International Country of Publication: Germany NLM ID: 8406612 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-0614 (Electronic) Linking ISSN: 01757598 NLM ISO Abbreviation: Appl Microbiol Biotechnol Subsets: MEDLINE
- بيانات النشر: Original Publication: Berlin ; New York : Springer International, c1984-
- الموضوع:
- نبذة مختصرة : DyP (dye-decolorizing peroxidase) enzymes are hemeproteins that catalyze the H
2 O2 -dependent oxidation of various molecules and also carry out lignin degradation, albeit with low activity. We identified a dyp gene in the genome of an Antarctic cold-tolerant microbe (Pseudomonas sp. AU10) that codes for a class B DyP. The recombinant protein (rDyP-AU10) was produced using Escherichia coli as a host and purified. We found that rDyP-AU10 is mainly produced as a dimer and has characteristics that resemble psychrophilic enzymes, such as high activity at low temperatures (20 °C) when using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and H2 O2 as substrates, thermo-instability, low content of arginine, and a catalytic pocket surface larger than the DyPs from some mesophilic and thermophilic microbes. We also report the steady-state kinetic parameters of rDyP-AU10 for ABTS, hydroquinone, and ascorbate. Stopped-flow kinetics revealed that Compound I is formed with a rate constant of (2.07 ± 0.09) × 10 6 M -1 s -1 at pH 5 and that this is the predominant species during turnover. The enzyme decolors dyes and modifies kraft lignin, suggesting that this enzyme may have potential use in bioremediation and in the cellulose and biofuel industries. KEY POINTS: • An Antarctic Pseudomonas strain produces a dye-decolorizing peroxidase. • The recombinant enzyme (rDyP-AU10) was produced in E. coli and purified. • rDyP-AU10 showed high activity at low temperatures. • rDyP-AU10 is potentially useful for biotechnological applications.
(© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.) - References: Abboud R, Popa R, Souza-Egipsy V, Giometti CS, Tollaksen S, Mosher JJ, Findlay RH, Nealson KH (2005) Low-temperature growth of Shewanella oneidensis MR-1. Appl Environ Microbiol 71(2):811–16. https://doi.org/10.1128/AEM.71.2.811-816.2005. (PMID: 10.1128/AEM.71.2.811-816.200515691935546687)
Abdel-Hamid AM, Solbiati JO, Cann IKO (2013) Insights into lignin degradation and its potential industrial applications, vol 82. Elsevier.
Ahmad M, Taylor CR, Pink D, Burton K, Eastwood D, Bending GD, Bugg TDH (2010) Development of novel assays for lignin degradation: comparative analysis of bacterial and fungal lignin degraders. Mol BioSyst 6(5):815–21. https://doi.org/10.1039/b908966g. (PMID: 10.1039/b908966g20567767)
Ahmad M, Roberts JN, Hardiman EM, Singh R, Eltis LD, Bugg TDH (2011) Identification of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase. Biochemistry 50(23):5096–5107. https://doi.org/10.1021/bi101892z. (PMID: 10.1021/bi101892z21534568)
Alem D, Marizcurrena JJ, Saravia V, Davyt D, Martinez-Lopez W, Castro-Sowinski S (2020) Production and antiproliferative effect of violacein, a purple pigment produced by an antarctic bacterial isolate. World J Microbiol Biotechnol 36(8):1–11. https://doi.org/10.1007/s11274-020-02893-4. (PMID: 10.1007/s11274-020-02893-4)
Alem D, Canclini L, Castro-Sowinski S, Martínez-López W (2022) Chemosensitizer effect of violacein on cisplatin-treated bladder cancer cells. CCMP 2(2):100036. https://doi.org/10.1016/j.ccmp.2022.100036. (PMID: 10.1016/j.ccmp.2022.100036)
Armenteros A, Juan J, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, von Heijne G, Nielsen H (2019) SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol 37(4):420–23. https://doi.org/10.1038/s41587-019-0036-z. (PMID: 10.1038/s41587-019-0036-z)
Arndt (2012) Native polyacrylamide gels Claudia, pp 49–53 in Vol. 869.
Aziz RK, Bartels D, Best A, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST server: rapid annotations using subsystems technology. BMC Genom 9:1–15. https://doi.org/10.1186/1471-2164-9-75. (PMID: 10.1186/1471-2164-9-75)
Bashtan-Kandybovich I, Venkatesagowda B, Barbosa AM, Malek L, Dekker RFH (2012) Modification of kraft lignin by biological demethylation. J-For 2(4):16–27. https://doi.org/10.13140/2.1.1440.3528. (PMID: 10.13140/2.1.1440.3528)
Bilal M, Rasheed T, Iqbal HMN, Hongbo H, Wang W, Zhang X (2017) Novel characteristics of horseradish peroxidase immobilized onto the polyvinyl alcohol-alginate beads and its methyl orange degradation potential. Int J Biol Macromol 105:328–35. https://doi.org/10.1016/j.ijbiomac.2017.07.042. (PMID: 10.1016/j.ijbiomac.2017.07.04228712997)
Bjellqvist B, Hughes GJ, Pasquali C, Paquet N, Ravier F, Sanchez J-C-C, Frutiger S, Hochstrasser D (1993) The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. Electrophor 14(1):1023–31. https://doi.org/10.1002/elps.11501401163. (PMID: 10.1002/elps.11501401163)
Bjellqvist B, Basse B, Olsen E, Celis JE (1994) Reference points for comparisons of two-dimensional maps of proteins from different human cell types defined in a pH scale where isoelectric points correlate with polypeptide compositions. Electrophor 15(1):529–39. https://doi.org/10.1002/elps.1150150171. (PMID: 10.1002/elps.1150150171)
Brissos V, Tavares D, Sousa AC, Robalo MP, Martins LO (2017) Engineering a bacterial dyp-type peroxidase for enhanced oxidation of lignin-related phenolics at alkaline pH. ACS Catal 7(5):3454–65. https://doi.org/10.1021/acscatal.6b03331. (PMID: 10.1021/acscatal.6b03331)
Cagide C, Castro-Sowinski S (2020) Technological and biochemical features of lignin-degrading enzymes: a brief review. Environ Sustain 3(4):371–89. https://doi.org/10.1007/s42398-020-00140-y. (PMID: 10.1007/s42398-020-00140-y)
Cavicchioli R, Charlton T, Ertan H, Mohd Omar S, Siddiqui KS, Williams TJ (2011) Biotechnological uses of enzymes from psychrophiles. Microb Biotechnol 4(4):449–60. https://doi.org/10.1111/j.1751-7915.2011.00258.x. (PMID: 10.1111/j.1751-7915.2011.00258.x217331273815257)
Chaplin AK, Wilson MT, Worrall JAR (2017) Kinetic characterisation of a dye decolourising peroxidase from Streptomyces lividans: new insight into the mechanism of anthraquinone dye decolourisation. Dalton Trans 46(29):9420–29. https://doi.org/10.1039/c7dt01144j. (PMID: 10.1039/c7dt01144j28695933)
Chen, Ting (2017) Microfungi for the removal of toxic triphenylmethane dyes. Min Microbial Wealth MetaGenomics 1–461. https://doi.org/10.1007/978-981-10-5708-3.
Chen C, Shrestha R, Jia K, Gao PF, Geisbrecht BV, Bossmann SH, Shi J, Li P (2015) Characterization of dye-decolorizing peroxidase (Dyp) from Thermomonospora curvata reveals unique catalytic properties of A-type DyPs. J Bio Chem 290(38):23447–63. https://doi.org/10.1074/jbc.M115.658807. (PMID: 10.1074/jbc.M115.658807)
Colpa DI, Fraaije MW, Van Bloois E (2014) DyP-type peroxidases: a promising and versatile class of enzymes. J Indust Microbiol Biotechnol 41(1):1–7. https://doi.org/10.1007/s10295-013-1371-6. (PMID: 10.1007/s10295-013-1371-6)
Conchillo-Solé O, de Groot NS, Avilés FX, Vendrell J, Daura X, Ventura S (2007) AGGRESCAN: a server for the prediction and evaluation of ‘hot spots’ of aggregation in polypeptides. BMC Bioinform 8. https://doi.org/10.1186/1471-2105-8-65.
Crawford DL, Crawford RL (1980) Microbial degradation of lignin. Enzyme Microb Technol 2(1):11–22. https://doi.org/10.1016/0141-0229(80)90003-4. (PMID: 10.1016/0141-0229(80)90003-4)
Dhankhar P, Dalal V, Mahto JK, Gurjar BR, Tomar S, Sharma AK, Kumar P (2020) Characterization of dye-decolorizing peroxidase from Bacillus subtilis. ABB 693(July):108590. https://doi.org/10.1016/j.abb.2020.108590. (PMID: 10.1016/j.abb.2020.10859032971035)
Dolman D, Newell GA, Thurlow MD (1975) A kinetic study of the reaction of horseradish peroxidase with hydrogen peroxide. Can J Biochem 53(5):495–501. https://doi.org/10.1139/o75-069. (PMID: 10.1139/o75-069237615)
Dunford HB (1995) One-electron oxidations by peroxidases. Xenobiotica 25(7):725–33. https://doi.org/10.3109/00498259509061888. (PMID: 10.3109/004982595090618887483669)
Dunford HB, Araiso T, Job D, Ricard J, Rutter R, Hager LP, Wever R, Kast WM, Boelens R, Ellfolk N, Ronnberg M (1982) “1982 Dunford.” 2:337–55.
Ellis, Morrison (1981) [23] Buffers for studying pH-dependent processes 405 [23] Buffers of constant ionic strength for studying pH-dependent processes. Biochemistry 20:1805.
Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1(3):200–208. https://doi.org/10.1038/nrmicro773. (PMID: 10.1038/nrmicro77315035024)
Fullana N, Braña V, Marizcurrena JJ, Morales D, Betton J-M, Marín M, Castro-Sowinski S (2017) Identification, recombinant production and partial biochemical characterization of an extracellular cold-active serine-metalloprotease from an antarctic Pseudomonas isolate. AIMS Bioengin 4(3):386–401. https://doi.org/10.3934/bioeng.2017.3.386. (PMID: 10.3934/bioeng.2017.3.386)
García-Laviña CX, Castro-Sowinski S, Ramón A (2019) Reference genes for real-time RT-PCR expression studies in an antarctic Pseudomonas exposed to different temperature conditions. Extremoph 23(5):625–33. https://doi.org/10.1007/s00792-019-01109-4. (PMID: 10.1007/s00792-019-01109-4)
Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) The proteomics protocols handbook. The Proteomics Protocols Handbook, p 571–608. https://doi.org/10.1385/1592598900.
Ingemar Falkehag S, Marton J (1966) Chromophores in kraft lignin. Am Chem Soc 59:1–21.
Khan SI, Zada NS, Sahinkaya M, Colak DN, Ahmed S, Hasan F, Belduz AO, Çanakçi S, Khan S, Badshah M, Shah AA (2021) Cloning, expression and biochemical characterization of lignin-degrading Dyp-type peroxidase from Bacillus sp strain BL5. Enzyme Microb Technol 151(September). https://doi.org/10.1016/j.enzmictec.2021.109917.
Kim D, Lee H (2019) Draft genome sequence of humic substance-degrading Pseudomonas sp. PAMC 29040 from Antarctic tundra soil. Korean J Microbiol 55(1):83–85. https://doi.org/10.7845/kjm.2019.9008. (PMID: 10.7845/kjm.2019.9008)
Kobori H, Sullivan CW, Shizuya H (1984) Heat-labile alkaline phosphatase from Antarctic bacteria: rapid 5’ end-labeling of nucleic acids. PNAS 81(21 I):6691–95. https://doi.org/10.1073/pnas.81.21.6691. (PMID: 10.1073/pnas.81.21.669116593525391996)
Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–49. https://doi.org/10.1093/molbev/msy096. (PMID: 10.1093/molbev/msy096297228875967553)
Laemmli (1970) © 1970 Nature Publishing Group. NPG 228:1979.
Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–48. https://doi.org/10.1093/bioinformatics/btm404. (PMID: 10.1093/bioinformatics/btm40417846036)
Li J, Chen X, Dongfeng X, Pan K (2019) Immobilization of horseradish peroxidase on electrospun magnetic nanofibers for phenol removal. Ecotoxicol Environ Saf 170(November 2018):716–21. https://doi.org/10.1016/j.ecoenv.2018.12.043. (PMID: 10.1016/j.ecoenv.2018.12.04330580166)
Liu L, Zhang J, Tan Y, Jiang Y, Mancheng H, Li S, Zhai Q (2014) Rapid decolorization of anthraquinone and triphenylmethane dye using chloroperoxidase: catalytic mechanism, analysis of products and degradation route. Chem Eng J 244:9–18. https://doi.org/10.1016/j.cej.2014.01.063. (PMID: 10.1016/j.cej.2014.01.063)
Lučić M, Svistunenko DA, Wilson MT, Chaplin AK, Davy B, Ebrahim A, Axford D, Tosha T, Sugimoto H, Owada S, Dworkowski FSN, Tews I, Owen RL, Hough MA, Worrall JAR (2020) Serial femtosecond zero dose crystallography captures a water-free distal heme site in a dye-decolorising peroxidase to reveal a catalytic role for an arginine in Fe IV =O formation. Angew Chem 132(48):21840–46. https://doi.org/10.1002/ange.202008622. (PMID: 10.1002/ange.202008622)
Lučić M, Wilson MT, Svistunenko DA, Owen RL, Hough MA, Worrall JAR (2021) Aspartate or arginine? Validated redox state X-ray structures elucidate mechanistic subtleties of FeIV = O formation in bacterial dye-decolorizing peroxidases. J Biol Inorg Chem 26(7):743–61. https://doi.org/10.1007/s00775-021-01896-2. (PMID: 10.1007/s00775-021-01896-2344779698463360)
Marizcurrena JJ, Morel MA, Braña V, Morales D, Martinez-López W, Castro-Sowinski S (2017) Searching for novel photolyases in UVC-resistant Antarctic bacteria. Extremoph 21(2):409–18. https://doi.org/10.1007/s00792-016-0914-y. (PMID: 10.1007/s00792-016-0914-y)
Marizcurrena JJ, Herrera LM, Costábile A, Morales D, Villadóniga C, Eizmendi A, Davyt D, Castro-Sowinski S (2019) Validating biochemical features at the genome level in the Antarctic bacterium Hymenobacter sp. strain UV11. FEMS Microbiol Lett 366(14):1–10. https://doi.org/10.1093/femsle/fnz177. (PMID: 10.1093/femsle/fnz177)
Martínez-Rosales C, Castro-Sowinski S (2011) Antarctic bacterial isolates that produce cold-active extracellular proteases at low temperature but are active and stable at high temperature. Polar Res 30(SUPPL.1). https://doi.org/10.3402/polar.v30i0.7123.
Matsuda S, Vert J-P, Saigo H, Ueda N, Toh H, Akutsu T (2005) A novel representation of protein sequences for prediction of subcellular location using support vector machines. Prot Sci 14(11):2804–13. https://doi.org/10.1110/ps.051597405. (PMID: 10.1110/ps.051597405)
Mendes S, Catarino T, Silveira C, Todorovic S, Martins LO (2015a) The catalytic mechanism of a-type dye-decolourising peroxidase BsDyP: neither aspartate nor arginine is individually essential for peroxidase activity. Catal Sci Technol 5(12):5196–5207. https://doi.org/10.1039/c5cy00478k. (PMID: 10.1039/c5cy00478k)
Mendes S, Brissos V, Gabriel A, Catarino T, Turner DL, Todorovic S, Martins LO (2015b) An integrated view of redox and catalytic properties of B-type PpDyP from Pseudomonas putida MET94 and its distal variants. ABB 574:99–107. https://doi.org/10.1016/j.abb.2015.03.009. (PMID: 10.1016/j.abb.2015.03.00925797439)
Morales M, Mate MJ, Romero A, Martínez MJ, Martínez ÁT, Ruiz-Dueñas FJ (2012) Two oxidation sites for low redox potential substrates: a directed mutagenesis, kinetic, and crystallographic study on Pleurotus eryngii versatile peroxidase. JBC 287(49):41053–67. https://doi.org/10.1074/jbc.M112.405548. (PMID: 10.1074/jbc.M112.405548)
Morel M, Iriarte A, Jara E, Musto H, Castro-Sowinski S (2016) Revealing the biotechnological potential of Delftia sp. JD2 by a genomic approach. AIMS Bioengin 3(2):156–75. https://doi.org/10.3934/bioeng.2016.2.156. (PMID: 10.3934/bioeng.2016.2.156)
Murakami K, Okajima K, Okabe H (1995) Catalase. Nippon Rinsho Jpn J Clin Med 53(1):358–60. https://doi.org/10.1086/330448. (PMID: 10.1086/330448)
Nielsen H, Engelbrecht J (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites artificial neural networks have been used for many biological. Prot Eng 10(1):1–6. https://doi.org/10.1142/S0129065797000537. (PMID: 10.1142/S0129065797000537)
Oh HN, Park D, Seong HJ, Kim D, Sul WJ (2019) Antarctic tundra soil metagenome as useful natural resources of cold-active lignocelluolytic enzymes. J Microbiol 57(10):865–73. https://doi.org/10.1007/s12275-019-9217-1. (PMID: 10.1007/s12275-019-9217-131571125)
Olajuyigbe FM, Afere FP, Adetuyi OY, Fatokun CO (2022) Decolorization of lignin-mimicking dyes by Stenotrophomonas sp. CFB-09: enzyme activity, transformation dynamics and process optimization. Biocat Biotransf 40(5):351–64. https://doi.org/10.1080/10242422.2021.1935898. (PMID: 10.1080/10242422.2021.1935898)
Parnikoza I, Kozeretska I, Kunakh V (2011) Vascular plants of the maritime antarctic: origin and adaptation. AJPS 02(03):381–95. https://doi.org/10.4236/ajps.2011.23044. (PMID: 10.4236/ajps.2011.23044)
Pfanzagl V, Nys K, Bellei M, Michlits H, Mlynek G, Battistuzzi G, Djinovic-Carugo K, Van Doorslaer S, Furtmüller PG, Hofbauer S, Obinger C (2018) Roles of distal aspartate and arginine of B-class dye-decolorizing peroxidase in heterolytic hydrogen peroxide cleavage. JBC 293(38):14823–38. https://doi.org/10.1074/jbc.RA118.004773. (PMID: 10.1074/jbc.RA118.004773)
Poulos TL (2014) Heme enzyme structure and function. Cheml Rev 114(7):3919–62. (PMID: 10.1021/cr400415k)
Rahmanpour R, Bugg TDH (2015) Characterisation of Dyp-type peroxidases from Pseudomonas fluorescens PF-5: oxidation of Mn(II) and polymeric lignin by Dyp1B. ABB 574:93–98. https://doi.org/10.1016/j.abb.2014.12.022. (PMID: 10.1016/j.abb.2014.12.02225558792)
Rahmanpour R, King LDW, Bugg TDH (2016a) Biochemical and biophysical research communications identification of an extracellular bacterial Fl avoenzyme that can prevent re-polymerisation of lignin fragments, p 1–5. https://doi.org/10.1016/j.bbrc.2016.10.144.
Rahmanpour R, Rea D, Jamshidi S, Fülöp V, Bugg TDH (2016b) Structure of Thermobifida fusca DyP-type peroxidase and activity towards kraft lignin and lignin model compounds. ABB 594:54–60. https://doi.org/10.1016/j.abb.2016.02.019. (PMID: 10.1016/j.abb.2016.02.01926901432)
Roberts JN, Singh R, Grigg JC, Murphy ME, Bugg TD, Eltis LD (2011) Characterization of dye-decolorizing peroxidases from Rhodococcus jostii RHA1. Biochemistry 50(23):5108–5119.
Sahinkaya C, Nigar D, Ozer A, Canakci S, Deniz I, Belduz AO (2019) Cloning, characterization and paper pulp applications of a newly isolated Dyp type peroxidase from Rhodococcus sp. T1. Mol Biol Rep 46(1):569–80. https://doi.org/10.1007/s11033-018-4509-9. (PMID: 10.1007/s11033-018-4509-930474775)
Santos A, Mendes S, Brissos V, Martins LO (2014) New dye-decolorizing peroxidases from Bacillus subtilis and Pseudomonas putida MET94: towards biotechnological applications. AMB 98(5):2053–65. https://doi.org/10.1007/s00253-013-5041-4. (PMID: 10.1007/s00253-013-5041-4)
Shrestha R, Huang G, Meekins DA, Geisbrecht BV, Li P (2017) Mechanistic insights into dye-decolorizing peroxidase revealed by solvent isotope and viscosity effects. ACS Catal 7(9):6352–64. https://doi.org/10.1021/acscatal.7b01861. (PMID: 10.1021/acscatal.7b01861293082955751952)
Shrestha R, Jia K, Khadka S, Eltis LD, Li P (2021) Mechanistic insights into DyPB from Rhodococcus jostii RHA1 via kinetic characterization. ACS Catal 11(9):5486–95. https://doi.org/10.1021/acscatal.1c00703. (PMID: 10.1021/acscatal.1c00703)
Singh R, Grigg JC, Armstrong Z, Murphy MEP, Eltis LD (2012) Distal heme pocket residues of B-type dye-decolorizing peroxidase: arginine but not aspartate is essential for peroxidase activity. JBC 287(13):10623–30. https://doi.org/10.1074/jbc.M111.332171. (PMID: 10.1074/jbc.M111.332171)
Struvay C, Feller G (2012) Optimization to low temperature activity in psychrophilic enzymes. Int J Mol Sci 13(9):11643–65. https://doi.org/10.3390/ijms130911643. (PMID: 10.3390/ijms130911643231098753472767)
Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Express Purif 41(1):207–34. https://doi.org/10.1016/j.pep.2005.01.016. (PMID: 10.1016/j.pep.2005.01.016)
Sugano Y (2009) DyP-Type peroxidases comprise a novel heme peroxidase family. CMLS 66(8):1387–1403. https://doi.org/10.1007/s00018-008-8651-8. (PMID: 10.1007/s00018-008-8651-819099183)
Sugano Y, Yoshida T (2021) Dyp-type peroxidases: recent advances and perspectives. Int J Mol Sci 22(11). https://doi.org/10.3390/ijms22115556.
Sugawara K, Nishihashi Y, Narioka T, Yoshida T, Morita M, Sugano Y (2017) Characterization of a novel Dyp-type peroxidase from Streptomyces avermitilis. J Biosci Bioeng 123(4):425–30. https://doi.org/10.1016/j.jbiosc.2016.12.001. (PMID: 10.1016/j.jbiosc.2016.12.00128089379)
Tian W, Chen C, Lei X, Zhao J, Liang J (2018) CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res 46(W1):W363-67. https://doi.org/10.1093/nar/gky473. (PMID: 10.1093/nar/gky473298603916031066)
Xu L, Sun J, Qaria MA, Gao L, Zhu D (2021) Dye decoloring peroxidase structure, catalytic properties and applications: current advancement and futurity. Catalyst 11(8):1. https://doi.org/10.3390/catal11080955. (PMID: 10.3390/catal11080955)
Yang X, Zheng J, Yongming L, Jia R (2016) Degradation and detoxification of the triphenylmethane dye malachite green catalyzed by crude manganese peroxidase from Irpex lacteus F17. ESPR 23(10):9585–97. https://doi.org/10.1007/s11356-016-6164-9. (PMID: 10.1007/s11356-016-6164-926846235)
Yang C, Yue F, Cui Y, Yuanmei X, Shan Y, Liu B, Zhou Y, Lü X (2018) Biodegradation of lignin by Pseudomonas sp. Q18 and the characterization of a novel bacterial dyp-type peroxidase. J Ind Microbiol Biotech 45(10):913–27. https://doi.org/10.1007/s10295-018-2064-y. (PMID: 10.1007/s10295-018-2064-y)
Yoshida T, Sugano Y (2015) A structural and functional perspective of Dyp-type peroxidase family. ABB 574(February):49–55. https://doi.org/10.1016/j.abb.2015.01.022. (PMID: 10.1016/j.abb.2015.01.02225655348)
Yoshida T, Sugano Y (2023) Unexpected diversity of dye-decolorizing peroxidases. BB Reports 33(October 2022):101401. https://doi.org/10.1016/j.bbrep.2022.101401. (PMID: 10.1016/j.bbrep.2022.10140136478894)
Yoshida T, Tsuge H, Konno H, Hisabori T, Sugano Y (2011) The catalytic mechanism of dye-decolorizing peroxidase Dyp may require the swinging movement of an aspartic acid residue. FEBS J 278(13):2387–94. https://doi.org/10.1111/j.1742-4658.2011.08161.x. (PMID: 10.1111/j.1742-4658.2011.08161.x21569205)
Zhang C, Diao H, Fengxia L, Bie X, Wang Y, Zhaoxin L (2012) Degradation of triphenylmethane dyes using a temperature and pH stable spore laccase from a novel strain of Bacillus vallismortis. Bioresour Technol 126:80–86. https://doi.org/10.1016/j.biortech.2012.09.055. (PMID: 10.1016/j.biortech.2012.09.05523073092)
Zhang Z, Lai J, Kesen W, Huang X, Guo S, Zhang L, Liu J (2018) Peroxidase-catalyzed chemiluminescence system and its application in immunoassay. Talanta 180:260–70. https://doi.org/10.1016/j.talanta.2017.12.024. (PMID: 10.1016/j.talanta.2017.12.02429332809)
Zimmermann L, Stephens A, Nam SZ, Rau D, Kübler J, Lozajic M, Gabler F, Söding J, Lupas AN, Alva V (2018) A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol 430(15):2237–43. https://doi.org/10.1016/j.jmb.2017.12.007. (PMID: 10.1016/j.jmb.2017.12.00729258817) - Grant Information: C916-347 Superior Council of Scientific Investigations (CSIC, Comisión Sectorial de Investigación Científica, Universidad de la República); 2018_47 Superior Council of Scientific Investigations (CSIC, Comisión Sectorial de Investigación Científica, Universidad de la República)
- Contributed Indexing: Keywords: Antarctica; Bioremediation; Cold-active enzyme; Dye-decolorizing peroxidase; Lignin modification
- الرقم المعرف: EC 1.11.1.7 (Peroxidase)
28752-68-3 (2,2'-azino-di-(3-ethylbenzothiazoline)-6-sulfonic acid)
0 (Coloring Agents)
BBX060AN9V (Hydrogen Peroxide)
EC 1.11.1.- (Peroxidases) - الموضوع: Date Created: 20230211 Date Completed: 20230314 Latest Revision: 20230314
- الموضوع: 20250114
- الرقم المعرف: 10.1007/s00253-023-12405-7
- الرقم المعرف: 36773063
- المصدر:
حقوق النشر© 2024، دائرة الثقافة والسياحة جميع الحقوق محفوظة Powered By EBSCO Stacks 3.3.0 [353] | Staff Login

حقوق النشر © دائرة الثقافة والسياحة، جميع الحقوق محفوظة
No Comments.