Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Treated tannery effluent and its impact on the receiving stream water: physicochemical characterization and cytogenotoxic evaluation using the Allium cepa test.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Springer Country of Publication: Austria NLM ID: 9806853 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1615-6102 (Electronic) Linking ISSN: 0033183X NLM ISO Abbreviation: Protoplasma Subsets: MEDLINE
    • بيانات النشر:
      Publication: <1998->: Wien ; New York : Springer
      Original Publication: Leipzig : Verlag von Gebrüder Borntraeger, 1927-
    • الموضوع:
    • نبذة مختصرة :
      Tanneries are considered some of the most polluting industries due to the heavy use of toxic compounds, most of which are released into water bodies, thus exerting adverse effects on aquatic biota. However, the effects on organisms of treated effluents when released into the natural environment are rarely evaluated. This study aims to assess the physicochemical parameters of a tannery effluent after treatment (TE) at a Common Effluent Treatment Plant as well as the water of the receiving stream and to evaluate cytogenotoxic effects in Allium cepa. Three sampling sites (A: TE discharge point; B: 100 m downstream from site A along the receiving stream; C: 100 m upstream from site A along the stream) were selected. Onion bulbs were exposed to TE (100%, 80%, 60% v/v), water samples from sites B and C, and tap water for 72 h. Chromosomal aberration and mitotic index were analyzed on the root cells of A. cepa. The TE was above the standard limits for ammoniacal nitrogen, COD, and total nitrogen. No cytogenotoxicity was observed in A. cepa exposed to samples from sites A and C. However, the stream water sampled downstream from the TE discharge site significantly reduced the mitotic index, indicating a cytotoxic effect. Therefore, this demonstrates the effects of interactions between the receiving water and the complex chemical mixtures in the TE. The findings thus showed that the toxicity assessment of treated effluents along with the receiving water body would provide valuable and more realistic information about the joint toxicity of chemical pollutants in aquatic environments.
      (© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.)
    • References:
      Alimba CG, Ogunkanmi AL, Ogunmola FJ (2013) Cytotoxic and genotoxic assessment of textile effluent using Allium assay. Curr Top Toxicol 9:65–74.
      APHA (2012) Standard methods for examination of water and wastewater, 22th ed. Washington.
      Aristi I, Casellas M, Elosegi A, Insa S, Petrovic M, Sabater S, Acuña V (2016) Nutrients versus emerging contaminants-Or a dynamic match between subsidy and stress effects on stream biofilms. Environ Pollut 212:208–215. https://doi.org/10.1016/j.envpol.2016.01.067. (PMID: 10.1016/j.envpol.2016.01.06726845368)
      Ashraf S, Naveed M, Afzal M, Ashraf S, Ahmad SR, Rehman K, Zahir ZA, Núñez-Delgado A (2020) Evaluation of toxicity on Ctenopharyngodon idella ue to tannery effluent remediated by constructed wetland technology. Processes 8:612. https://doi.org/10.3390/pr8050612. (PMID: 10.3390/pr8050612)
      Benvenuti T, Kieling-Rubio MA, Klauck CR, Rodrigues MA (2015) Evaluation of water quality at the source of streams of the Sinos River Basin, southern Brazil. Braz J Biol 75:98–104. https://doi.org/10.1590/1519-6984.1513. (PMID: 10.1590/1519-6984.151326270221)
      Bharagava RN, Saxena G, Mulla SI, Patel DK (2018) Characterization and identification of recalcitrant organic pollutants (ROPs) in tannery wastewater and its phytotoxicity evaluation for environmental safety. Arch Environ Contam Toxicol 75:259–272. https://doi.org/10.1007/s00244-017-0490-x. (PMID: 10.1007/s00244-017-0490-x29243159)
      Brasil (2005) Conselho Nacional do Meio Ambiente – CONAMA (National Environment Council), 2005. Resolução nº 357 de 17 de março de 2005. Avaliable from: http://www.mma.gov.br/port/conama/res/res05/res35705.pdf . Accessed s in: Nov. 2021.
      Brasil (2011) Conselho Nacional do Meio Ambiente – CONAMA (National Environment Council), 2011. Resolução nº 430 de 13 de maio de 2011. Avaliable from: http://conama.mma.gov.br/?option=com_sisconama&task=arquivo.download&id=627 . Accessed in: Nov. 2021.
      Bühler D, Marinowic D, Rodrigues MAS, Silva LB (2012) Evaluation of genotoxicity and cytotoxicity of treated tannery wastewater in Southern Brazil. Int J Environ Technol Manag 15:114–123. https://doi.org/10.1504/IJETM.2012.047230. (PMID: 10.1504/IJETM.2012.047230)
      Chatterjee N, Walker GC (2017) Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen 58:235–263. https://doi.org/10.1002/em.22087. (PMID: 10.1002/em.22087284855375474181)
      CICB (2017) Exportações Brasileiras de Couros e Peles – Julho 2017. http://cicb.org.br/storage/files/repositories/phpyktWKA-total-expjun17-vr.pdf . Accessed in: Nov 2021.
      de Santana da Silva J, Heck MC, Buzo MG, Almeida IV, Vicentini VEP (2018) Evaluation of textile laundry effluents and their cytotoxic effects on Allium cepa. Environ Sci Pollut Res Int 25:27890-27898. https://doi.org/10.1007/s11356-018-2813-5.
      Dixit S, Yadav A, Dwivedi PD, Das M (2015) Toxic hazards of leather industry and technologies to combat threat: a review. J Clean Prod 87:39–49. (PMID: 10.1016/j.jclepro.2014.10.017)
      Fernandez M, Pereira PP, Agostini E, González PS (2020) Impact assessment of bioaugmented tannery effluent discharge on the microbiota of water bodies. Ecotoxicology 29:973–986. https://doi.org/10.1007/s10646-020-02237-w. (PMID: 10.1007/s10646-020-02237-w32556791)
      Golovko O, Örn S, Sörengård M, Frieberg K, Nassazzi W, Lai FY, Ahrens L (2021) Occurrence and removal of chemicals of emerging concern in wastewater treatment plants and their impact on receiving water systems. Sci Total Environ 754:142122. https://doi.org/10.1016/j.scitotenv.2020.142122. (PMID: 10.1016/j.scitotenv.2020.14212232920399)
      Gupta K, Gaumat S, Mishra K (2012) Studies on phyto-genotoxic assessment of tannery effluent and chromium on Allium cepa. J Environ Biol 33:557–563. (PMID: 23029903)
      Hansen É, Monteiro de Aquim P, Hansen AW, Cardoso JK, Ziulkoski AL, Gutterres M (2020) Impact of post-tanning chemicals on the pollution load of tannery wastewater. J Environ Manage 269:110787. https://doi.org/10.1016/j.jenvman.2020.110787. (PMID: 10.1016/j.jenvman.2020.11078732430280)
      Harth FUR, Arras C, Brettschneider DJ, Misovic A, Oehlmann J, Schulte-Oehlmann U, Oetken M (2018) Small but with big impact? Ecotoxicological effects of a municipal wastewater effluent on a small creek. J Environ Sci Health A Tox Hazard Subst Environ Eng 53:1149–1160. https://doi.org/10.1080/10934529.2018.1530328. (PMID: 10.1080/10934529.2018.153032830623699)
      Júnior HM, Silva Jd, Arenzon A, Portela CS, Ferreira IC, Henriques JA (2007) Evaluation of genotoxicity and toxicity of water and sediment samples from a Brazilian stream influenced by tannery industries. Chemosphere 67:1211–1217. https://doi.org/10.1016/j.chemosphere.2006.10.048. (PMID: 10.1016/j.chemosphere.2006.10.04817157352)
      Kumari V, Yadav A, Haq I, Kumar S, Bharagava RN, Singh SK, Raj A (2016) Genotoxicity evaluation of tannery effluent treated with newly isolated hexavalent chromium reducing Bacillus cereus. J Environ Manage 183:204–211. https://doi.org/10.1016/j.jenvman.2016.08.017. (PMID: 10.1016/j.jenvman.2016.08.01727591849)
      Leme DM, Marin-Morales MA (2009) Allium cepa test in environmental monitoring: a review on its application. Mutat Res 682:71–81. https://doi.org/10.1016/j.mrrev.2009.06.002. (PMID: 10.1016/j.mrrev.2009.06.00219577002)
      Lunardelli B, Cabral MT, Vieira CED, Oliveira LF, Risso WE, Meletti PC, Martinez CBR (2018) Chromium accumulation and biomarker responses in the Neotropical fish Prochilodus lineatus caged in a river under the influence of tannery activities. Ecotoxicol Environ Saf 153:188–194. https://doi.org/10.1016/j.ecoenv.2018.02.023. (PMID: 10.1016/j.ecoenv.2018.02.02329433087)
      Meador JP, Yeh A, Gallagher EP (2018) Adverse metabolic effects in fish exposed to contaminants of emerging concern in the field and laboratory. Environ Pollut 236:850–861. https://doi.org/10.1016/j.envpol.2018.02.007. (PMID: 10.1016/j.envpol.2018.02.007294712845858870)
      Neale PA, O’Brien JW, Glauch L, König M, Krauss M, Mueller JF, Tscharke B, Escher BI (2020) Wastewater treatment efficacy evaluated with in vitro bioassays. Water Res 9:100072. https://doi.org/10.1016/j.wroa.2020.100072. (PMID: 10.1016/j.wroa.2020.100072)
      Ohe T, Watanabe T, Wakabayashi K (2004) Mutagens in surface waters: a review. Mutat Res 567:109–149. (PMID: 10.1016/j.mrrev.2004.08.00315572284)
      Papa M, Ceretti E, Viola GC, Feretti D, Zerbini I, Mazzoleni G, Steimberg N, Pedrazzani R, Bertanza G (2016) The assessment of WWTP performance: towards a jigsaw puzzle evaluation? Chemosphere 145:291–300. https://doi.org/10.1016/j.chemosphere.2015.11.054. (PMID: 10.1016/j.chemosphere.2015.11.05426688267)
      Pathiratne A, Hemachandra CK, De Silva N (2015) Efficacy of Allium cepa test system for screening cytotoxicity and genotoxicity of industrial effluents originated from different industrial activities. Environ Monit Assess 187:730. https://doi.org/10.1007/s10661-015-4954-z. (PMID: 10.1007/s10661-015-4954-z26547320)
      Pedde V, Figueiredo JAS, Nunes MF, Prodanov CC (2015) Environment and society: the Sinos River Basin and public policies. Braz J Biol 75:128–136. https://doi.org/10.1590/1519-6984.1313. (PMID: 10.1590/1519-6984.131326270225)
      Petry AC, Schulz UH (2006) Longitudinal changes and indicator species of the fish fauna in the subtropical Sinos River, Brazil. J Fish Biol 69:272–290. https://doi.org/10.1111/j.1095-8649.2006.01110.x. (PMID: 10.1111/j.1095-8649.2006.01110.x)
      Rodrigues MLK, Formoso MLL (2006) Heavy metals in recent sediments and bottom-fish under the influence of tanneries in South Brazil. Water Air Soil Pollut 176:307–327. (PMID: 10.1007/s11270-006-9170-6)
      Sonavane M, Schollee JE, Hidasi AO, Creusot N, Brion F, Suter MJF, Hollender J, Ait-Aissa S (2018) An integrative approach combining passive sampling, bioassays, and effect-directed analysis to assess the impact of wastewater effluent. Environ Toxicol Chem 37:2079–2088. (PMID: 10.1002/etc.415529667746)
      Souza JM, Guimarães ATB, Silva WAM, Pereira CCO, Menezes IPP, Malafaia G (2016) Tannery effluent effects on vertebrates: lessons from experimental animals. Int J Curr Res 8:39902–39914.
      Stalter D, Magdeburg A, Quednow K, Botzat A, Oehlmann J (2013) Do contaminants originating from state-of-the-art treated wastewater impact the ecological quality of surface waters? PLoS ONE 8:e60616. https://doi.org/10.1371/journal.pone.0060616. (PMID: 10.1371/journal.pone.0060616235932633620539)
      Thangapandian V, Sophia M, Swaminathan K (1995) Cytological effect of tannery effluents on root meristems of Allium cepa Linn test system. J Environ Biol 16:67–70.
      Urbina-Suarez NA, Machuca-Martínez F, Barajas-Solano AF (2021) Advanced oxidation processes and biotechnological alternatives for the treatment of tannery wastewater. Molecules 26:3222. https://doi.org/10.3390/molecules26113222. (PMID: 10.3390/molecules26113222340721018198592)
      Viscardi MH, da Silveira LF, Vargas LK et al (2020) Environmental quality and cytogenotoxic impact of the waters of a stream receiving effluents from tannery industry. Water Air Soil Pollut 231:318. https://doi.org/10.1007/s11270-020-04698-5. (PMID: 10.1007/s11270-020-04698-5)
      Völker J, Stapf M, Miehe U, Wagner M (2019) Systematic review of toxicity removal by advanced wastewater treatment technologies via ozonation and activated carbon. Environ Sci Technol 53:7215–7233. https://doi.org/10.1021/acs.est.9b00570. (PMID: 10.1021/acs.est.9b0057031120742)
      Wijeyaratne WMDN, Wickramasinghe PGMU (2020) Chromosomal abnormalities in Allium cepa induced by treated textile effluents: spatial and temporal variations. J Toxicol 2020:8814196. https://doi.org/10.1155/2020/8814196. (PMID: 10.1155/2020/8814196328318327422008)
      Yadav A, Raj A, Purchase D, Ferreira LFR, Saratale GD, Bharagava RN (2019) Phytotoxicity, cytotoxicity and genotoxicity evaluation of organic and inorganic pollutants rich tannery wastewater from a Common Effluent Treatment Plant (CETP) in Unnao district, India using Vigna radiata and Allium cepa. Chemosphere 224:324–332. https://doi.org/10.1016/j.chemosphere.2019.02.124. (PMID: 10.1016/j.chemosphere.2019.02.12430826702)
      Yildiz M, Ciğerci IH, Konuk M, Fidan AF, Terzi H (2009) Determination of genotoxic effects of copper sulphate and cobalt chloride in Allium cepa root cells by chromosome aberration and comet assays. Chemosphere 75:934–938. https://doi.org/10.1016/j.chemosphere.2009.01.023. (PMID: 10.1016/j.chemosphere.2009.01.02319201446)
      Zegura B, Heath E, Cernosa A, Filipic M (2009) Combination of in vitro bioassays for the determination of cytotoxic and genotoxic potential of wastewater, surface water and drinking water samples. Chemosphere 75:1453–1460. (PMID: 10.1016/j.chemosphere.2009.02.04119307011)
      Zhao C, Chen W (2019) A review for tannery wastewater treatment: some thoughts under stricter discharge requirements. Environ Sci Pollut Res Int 26:26102–26111. https://doi.org/10.1007/s11356-019-05699-6. (PMID: 10.1007/s11356-019-05699-631280442)
    • Contributed Indexing:
      Keywords: Bioassays; Environmental impacts; Tannery wastewater; Toxicity
    • الرقم المعرف:
      059QF0KO0R (Water)
      0 (Water Pollutants, Chemical)
    • الموضوع:
      Date Created: 20221201 Date Completed: 20230426 Latest Revision: 20230426
    • الموضوع:
      20240829
    • الرقم المعرف:
      10.1007/s00709-022-01825-3
    • الرقم المعرف:
      36454318