Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

The influence of loading configurations on numerical evaluation of failure mechanisms in an uncemented femoral prosthesis.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • المؤلفون: Mathai B;Mathai B; Gupta S; Gupta S
  • المصدر:
    International journal for numerical methods in biomedical engineering [Int J Numer Method Biomed Eng] 2020 Aug; Vol. 36 (8), pp. e3353. Date of Electronic Publication: 2020 Jun 08.
  • نوع النشر :
    Journal Article
  • اللغة:
    English
  • معلومة اضافية
    • المصدر:
      Publisher: Wiley Country of Publication: England NLM ID: 101530293 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2040-7947 (Electronic) Linking ISSN: 20407939 NLM ISO Abbreviation: Int J Numer Method Biomed Eng Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: [Oxford, UK] : Wiley
    • الموضوع:
    • نبذة مختصرة :
      The clinical relevance of numerical predictions of failure mechanisms in femoral prosthesis could be impaired due to simplification of musculoskeletal loading. This study investigated the extent to which loading configurations affect the preclinical analysis of an uncemented femoral implant. Patient-specific, CT-scan based FE models of intact and implanted femurs were developed and analysed using three loading configurations, which comprised of load cases representing daily activities. First loading configuration consisted of two load cases, each of walking and stair climbing. The second consisted of more number of load cases for each of these activities. The third included load cases of additional activities of standing up and sitting down. Failure criteria included maximum principal strains, interface debonding, implant-bone relative displacement and adaptive bone remodelling. Simplified loading configurations led to a reduction (100-1500 με) around cortical principal strains. The area prone to interface debonding were observed in the proximo-medial part of implant and was maximum when all activities were considered. This area was reduced by 35%, when simplified loading configurations were chosen. Interfacial area of 88%-96% experienced implant-bone relative displacements below 40 μm; however maximum of 110 μm was observed at the calcar region. Lack of consideration of variety of activities overestimated (30%-50%) bone resorption around the lateral part of the implant; hence, these bone remodelling results were less clinically relevant. Considering a variety daily activities along with an adequate number of load cases for each activity seemed necessary for pre-clinical evaluations of reconstructed femur.
      (© 2020 John Wiley & Sons, Ltd.)
    • References:
      Prendergast P. Finite element models in tissue mechanics and orthopaedic implant design. Clin Biomech. 1997;12(6):343-366.
      Erdemir A, Guess TM, Halloran J, Tadepalli SC, Morrison TM. Considerations for reporting finite element analysis studies in biomechanics. J Biomech. 2012;45(4):625-633.
      Taylor M, Prendergast PJ. Four decades of finite element analysis of orthopaedic devices: where are we now and what are the opportunities? J Biomech. 2015;48(5):767-778.
      Speirs AD, Heller MO, Duda GN, Taylor WR. Physiologically based boundary conditions in finite element modelling. J Biomech. 2007;40(10):2318-2323.
      Tensi H, Gese H, Ascherl R. Non-linear three-dimensional finite element analysis of a cementless hip endoprosthesis. Proc Inst Mech Eng H. 1989;203(4):215-222.
      Stolk J, Verdonschot N, Huiskes R. Hip-joint and abductor-muscle forces adequately represent in vivo loading of a cemented total hip reconstruction. J Biomech. 2001;34(7):917-926.
      Ploeg v dB, Tarala M, Homminga J, Janssen D, Buma P, Verdonschot N. Toward a more realistic prediction of peri-prosthetic micromotions. J Orthop Res. 2012;30(7):1147-1154.
      Chanda S, Dickinson A, Gupta S, Browne M. Full-field in vitro measurements and in silico predictions of strain shielding in the implanted femur after total hip arthroplasty. Proc Inst Mech Eng H. 2015;229(8):549-559.
      Cristofolini L, Viceconti M, Toni A, Giunti A. Influence of thigh muscles on the axial strains in a proximal femur during early stance in gait. J Biomech. 1995;28(5):617-624.
      Duda GN, Heller M, Albinger J, Schulz O, Schneider E, Claes L. Influence of muscle forces on femoral strain distribution. J Biomech. 1998;31(9):841-846.
      Polgar K, Gill H, Viceconti M, Murray D, O'connor J. Strain distribution within the human femur due to physiological and simplified loading: finite element analysis using the muscle standardized femur model. Proc Inst Mech Eng H. 2003;217(3):173-189.
      Bitsakos C, Kerner J, Fisher I, Amis AA. The effect of muscle loading on the simulation of bone remodelling in the proximal femur. J Biomech. 2005;38(1):133-139.
      Tarala M, Janssen D, Verdonschot N. Balancing incompatible endoprosthetic design goals: a combined ingrowth and bone remodeling simulation. Med Eng Phys. 2011;33(3):374-380.
      Geraldes DM, Modenese L, Phillips AT. Consideration of multiple load cases is critical in modelling orthotropic bone adaptation in the femur. Biomech Model Mechanobiol. 2016;15(5):1029-1042.
      Mukherjee K, Gupta S. The effects of musculoskeletal loading regimes on numerical evaluations of acetabular component. Proc Inst Mech Eng H. 2016;230(10):918-929.
      Jonkers I, Sauwen N, Lenaerts G, Mulier M, Perre V dG, Jaecques S. Relation between subject-specific hip joint loading, stress distribution in the proximal femur and bone mineral density changes after total hip replacement. J Biomech. 2008;41(16):3405-3413.
      Geraldes DM, Phillips A. A comparative study of orthotropic and isotropic bone adaptation in the femur. Int J Number Meth Bio. 2014;30(9):873-889.
      Stolk J, Verdonschot N, Huiskes R. Stair climbing is more detrimental to the cement in hip replacement than walking. Clin Orthop Relat Res. 2002;405:294-305.
      Kassi JP, Heller MO, Stoeckle U, Perka C, Duda GN. Stair climbing is more critical than walking in pre-clinical assessment of primary stability in cementless THA in vitro. J Biomech. 2005;38(5):1143-1154.
      Chanda S, Gupta S, Pratihar DK. A combined neural network and genetic algorithm based approach for optimally designed femoral implant having improved primary stability. Appl Soft Comput. 2016;38:296-307.
      Polgar K, Viceconti M, Connor J. A comparison between automatically generated linear and parabolic tetrahedra when used to mesh a human femur. Proc Inst Mech Eng H. 2001;215(1):85-94.
      Viceconti M, Davinelli M, Taddei F, Cappello A. Automatic generation of accurate subject-specific bone finite element models to be used in clinical studies. J Biomech. 2004;37(10):1597-1605.
      Ramos A, Simoes J. Tetrahedral versus hexahedral finite elements in numerical modelling of the proximal femur. Med Eng Phys. 2006;28(9):916-924.
      Schileo E, Taddei F, Malandrino A, Cristofolini L, Viceconti M. Subject-specific finite element models can accurately predict strain levels in long bones. J Biomech. 2007;40(13):2982-2989.
      Rancourt D, Shirazi-Adl A, Drouin G, Paiement G. Friction properties of the interface between porous-surfaced metals and tibial cancellous bone. J Biomed Mater Res. 1990;24(11):1503-1519.
      Reggiani B, Cristofolini L, Varini E, Viceconti M. Predicting the subject-specific primary stability of cementless implants during pre-operative planning: preliminary validation of subject-specific finite-element models. J Biomech. 2007;40(11):2552-2558.
      Zannoni C, Mantovani R, Viceconti M. Material properties assignment to finite element models of bone structures: a new method. Med Eng Phys. 1999;20(10):735-740.
      Taddei F, Pancanti A, Viceconti M. An improved method for the automatic mapping of computed tomography numbers onto finite element models. Med Eng Phys. 2004;26(1):61-69.
      Morgan EF, Bayraktar HH, Keaveny TM. Trabecular bone modulus-density relationships depend on anatomic site. J Biomech. 2003;36(7):897-904.
      Vail TP, Glisson RR, Koukoubis TD, Guilak F. The effect of hip stem material modulus on surface strain in human femora. J Biomech. 1998;31(7):619-628.
      Trabelsi N, Yosibash Z. Patient-specific finite-element analyses of the proximal femur with orthotropic material properties validated by experiments. J Biomech Eng. 2011;133(6):061001.
      Mathai B, Gupta S. Numerical predictions of hip joint and muscle forces during daily activities: a comparison of musculoskeletal models. Proc Inst Mech Eng H. 2019;233(6):636-647.
      Delp SL, Anderson FC, Arnold AS, et al. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng. 2007;54(11):1940-1950.
      Bergmann G, Deuretzbacher G, Heller M, et al. Hip contact forces and gait patterns from routine activities. J Biomech. 2001;34(7):859-871.
      Delp SL, Loan JP, Hoy MG, Zajac FE, Topp EL, Rosen JM. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans Biomed Eng. 1990;37(8):757-767.
      Duda GN, Brand D, Freitag S, Lierse W, Schneider E. Variability of femoral muscle attachments. J Biomech. 1996;29(9):1185-1190.
      Huiskes R, Weinans H, Grootenboer H, Dalstra M, Fudala B, Slooff T. Adaptive bone-remodeling theory applied to prosthetic-design analysis. J Biomech. 1987;20(11):1135-1150.
      Ghosh R, Gupta S. Bone remodelling around cementless composite acetabular components: the effects of implant geometry and implant-bone interfacial conditions. J Mech Behav Biomed Mater. 2014;32:257-269.
      Jasty M, Bragdon C, Burke D, O'connor D, Lowenstein J, Harris WH. In vivo skeletal responses to porous-surfaced implants subjected to small induced motions. JBJS. 1997;79(5):707-714.
      Kienapfel H, Sprey C, Wilke A, Griss P. Implant fixation by bone ingrowth. J Arthroplast. 1999;14(3):355-368.
      Liu X, Niebur GL. Bone ingrowth into a porous coated implant predicted by a mechano-regulatory tissue differentiation algorithm. Biomech Model Mechanobiol. 2008;7(4):335-344.
      Mukherjee K, Gupta S. Bone ingrowth around porous-coated acetabular implant: a three-dimensional finite element study using mechanoregulatory algorithm. Biomech Model Mechanobiol. 2016;15(2):389-403.
      Dickinson A, Taylor A, Browne M. Implant-bone interface healing and adaptation in resurfacing hip replacement. Comput Methods Biomech Biomed Engin. 2012;15(9):935-947.
      Ali AA, Cristofolini L, Schileo E, et al. Specimen-specific modeling of hip fracture pattern and repair. J Biomech. 2014;47(2):536-543.
      Schileo E, Taddei F, Cristofolini L, Viceconti M. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro. J Biomech. 2008;41(2):356-367.
      Schileo E, Balistreri L, Grassi L, Cristofolini L, Taddei F. To what extent can linear finite element models of human femora predict failure under stance and fall loading configurations? J Biomech. 2014;47(14):3531-3538.
      Hoffman O. The brittle strength of orthotropic materials. J Compos Mater. 1967;1(2):200-206.
      Huiskes R, Rietbergen B. Preclinical testing of Total hip stems: the effects of coating placement. Clin Orthop Relat Res. 1995;319:64-76.
      Kaplan SJ, Hayes WC, Stone JL, Beaupré GS. Tensile strength of bovine trabecular bone. J Biomech. 1985;18(9):723-727.
      Stone JL, Beaupre GS, Hayes WC. Multiaxial strength characteristics of trabecular bone. J Biomech. 1983;16(9):743-752.
      Pilliar R, Lee J, Maniatopoulos C. Observations on the effect of movement on bone ingrowth into porous-surfaced implants. Clin Orthop Relat Res. 1986;208:108-113.
      Carter D, Orr T, Fyhrie DP. Relationships between loading history and femoral cancellous bone architecture. J Biomech. 1989;22(3):231-244.
      Gruen TA, McNeice GM, Amstutz HC. "Modes of failure" of cemented stem-type femoral components: a radiographic analysis of loosening. Clin Orthop Relat Res. 1979;141:17-27.
      Chanda S, Gupta S, Pratihar DK. Effects of interfacial conditions on shape optimization of cementless hip stem: an investigation based on a hybrid framework. Struct Multidiscip Optim. 2016;53(5):1143-1155.
      Bessho M, Ohnishi I, Matsuyama J, Matsumoto T, Imai K, Nakamura K. Prediction of strength and strain of the proximal femur by a CT-based finite element method. J Biomech. 2007;40(8):1745-1753.
      Sofuoglu H, Cetin ME. An investigation on mechanical failure of hip joint using finite element method. Biomed Tech (Berl). 2015;60(6):603-616.
      Cetin ME, Sofuoglu H. A statistical approach to explore cemented total hip reconstruction performance. Australas Phys Eng Sci Med. 2018;41(1):177-188.
      Yeh OC, Keaveny TM. Relative roles of microdamage and microfracture in the mechanical behavior of trabecular bone. J Orthop Res. 2001;19(6):1001-1007.
      Kaneko TS, Pejcic MR, Tehranzadeh J, Keyak JH. Relationships between material properties and CT scan data of cortical bone with and without metastatic lesions. Med Eng Phys. 2003;25(6):445-454.
      Aamodt A, Lund-Larsen J, Eine J, Andersen E, Benum P, Husby OS. In vivo measurements show tensile axial strain in the proximal lateral aspect of the human femur. J Orthop Res. 1997;15(6):927-931.
      Huiskes R. The various stress patterns of press-fit, ingrown, and cemented femoral stems. Clin Orthop. 1990;261:27-38.
      Taylor M, Tanner K, Freeman M, Yettram A. Stress and strain distribution within the intact femur: compression or bending? Med Eng Phys. 1996;18(2):122-131.
      Tarala M, Janssen D, Telka A, Waanders D, Verdonschot N. Experimental versus computational analysis of micromotions at the implant-bone Interface. Proc Inst Mech Eng H. 2011;225(1):8-15.
      Wong A, New A, Isaacs G, Taylor M. Effect of bone material properties on the initial stability of a cementless hip stem: a finite element study. Proc Inst Mech Eng H. 2005;219(4):265-275.
      Viceconti M, Brusi G, Pancanti A, Cristofolini L. Primary stability of an anatomical cementless hip stem: a statistical analysis. J Biomech. 2006;39(7):1169-1179.
      Pancanti A, Bernakiewicz M, Viceconti M. The primary stability of a cementless stem varies between subjects as much as between activities. J Biomech. 2003;36(6):777-785.
      Pettersen SH, Wik TS, Skallerud B. Subject specific finite element analysis of implant stability for a cementless femoral stem. Clin Biomech. 2009;24(6):480-487.
      Akhavan S, Matthiesen MM, Schulte L, et al. Clinical and histologic results related to a low-modulus composite total hip replacement stem. JBJS. 2006;88(6):1308-1314.
      Spears IR, Pfleiderer M, Schneider E, Hille E, Morlock MM. The effect of interfacial parameters on cup-bone relative micromotions: a finite element investigation. J Biomech. 2001;34(1):113-120.
      Suárez DR, Weinans H, Keulen vF. Bone remodelling around a cementless glenoid component. Biomech Model Mechanobiol. 2012;11(6):903-913.
    • Contributed Indexing:
      Keywords: bone remodelling; finite element analysis; hip; implant-bone micromotion; musculoskeletal loads; proximal femur
    • الموضوع:
      Date Created: 20200522 Date Completed: 20211025 Latest Revision: 20211025
    • الموضوع:
      20221213
    • الرقم المعرف:
      10.1002/cnm.3353
    • الرقم المعرف:
      32436357