Item request has been placed!
×
Item request cannot be made.
×

Processing Request
A 3D Co-Culture Scaffold Approach to Assess Spatially Fractionated Radiotherapy Bystander and Abscopal Immune Effects on Clonogenic Survival.
Item request has been placed!
×
Item request cannot be made.
×

Processing Request
- معلومة اضافية
- نبذة مختصرة :
Spatially fractionated radiotherapy (SFRT) offers a promising approach for debulking large tumors by delivering high-dose radiation to a fraction of the tumor volume. However, the complex tumor microenvironment necessitates models beyond traditional 2D cultures and resource-intensive animal studies for SFRT investigations. Three-dimensional (3D) scaffold-based models with an adequate cross-sectional area have emerged as uniquely suited platforms to bridge this gap, by providing a more realistic platform for GRID-based SFRT research. In this study, we employed a 3D co-culture scaffold model to dissect the contributions of the radiation-induced bystander effect, abscopal effect, and immune system response on clonogenic survival following GRID irradiation. MDA-MB-231 breast cancer cells were seeded on commercial 3D scaffolds and irradiated at a 20 Gy peak dose using lead grids with three- and six-hole patterns, exposing ~12.8% and 25.7% of the scaffold area, respectively. An assessment of reproductive cell survival revealed a significant bystander effect, as the survival was notably lower than predicted based solely on the directly irradiated fraction. Evidence of an abscopal effect was observed by culturing non-irradiated cells in media exposed to GRID irradiation. Furthermore, a co-culture with allogeneic peripheral blood mononuclear cells (PBMCs) modulated clonogenic survival, with an additive effect observed when combined with SFRT. These findings underscore the presence of a bystander effect in GRID radiotherapy and indicate an abscopal immune component, particularly with the three-hole GRID configuration. This study established the utility of in vitro 3D co-culture scaffolds as an effective model system for elucidating complex SFRT-mediated biological responses. [ABSTRACT FROM AUTHOR]
No Comments.