Item request has been placed!
×
Item request cannot be made.
×

Processing Request
An in silico approach to identification, categorization and prediction of nucleic acid binding proteins.
Item request has been placed!
×
Item request cannot be made.
×

Processing Request
- معلومة اضافية
- نبذة مختصرة :
The interaction between proteins and nucleic acid plays an important role in many processes, such as transcription, translation and DNA repair. The mechanisms of related biological events can be understood by exploring the function of proteins in these interactions. The number of known protein sequences has increased rapidly in recent years, but the databases for describing the structure and function of protein have unfortunately grown quite slowly. Thus, improving such databases is meaningful for predicting protein–nucleic acid interactions. Furthermore, the mechanism of related biological events, such as viral infection or designing novel drug targets, can be further understood by understanding the function of proteins in these interactions. The information for each sequence, including its function and interaction sites, were collected and identified, and a database called PNIDB was built. The proteins in PNIDB were grouped into 27 classes, such as transcription, immune system, and structural protein, etc. The function of each protein was then predicted using a machine learning method. Using our method, the predictor was trained on labeled sequences, and then the function of a protein was predicted based on the trained classifier. The prediction accuracy achieved a score of 77.43% by 10-fold cross validation. [ABSTRACT FROM AUTHOR]
- نبذة مختصرة :
Copyright of Briefings in Bioinformatics is the property of Oxford University Press / USA and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.