Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Synergistic Effect of Nano-Silica and Intumescent Flame Retardant on the Fire Reaction Properties of Polypropylene Composites

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      MDPI
    • الموضوع:
      2023
    • Collection:
      PubMed Central (PMC)
    • نبذة مختصرة :
      Silica nanoparticles (nano-silica) were used as synergistic agents with ammonium polyphosphate (APP) and pentaerythritol (PER) to enhance flame retardancy of polypropylene (PP) in this research. The composites were prepared using a melt-mixing method. The influences of nano-silica on the fire performance of composites were thoroughly discussed, which promotes understanding of nano-silica on the flame-retardant performance of polypropylene composite. Scanning electron microscope (SEM) and energy-dispersive spectrometer (EDS) results indicated that the nano-silica with a diameter of about 95 ± 3.9 nm were dispersed favorably in the composite matrix, which might elevate its synergistic effect with intumescent flame retardant and improve the flame retardancy of polypropylene composite. The synergistic effects between nano-silica and intumescent flame retardant on PP composites were studied using the limiting oxygen index (LOI), UL-94 test, and cone calorimeter test (CCT). The total amount of flame retardant was maintained at 30%. When the dosage of nano-silica was 1 wt.%, the LOI value of PP/IFR/Si1.0 composite reached 27.3% and its UL-94 classification reached V-1. Based on the parameters of the CCT, the introduction of nano-silica induced composites with depressed heat release rate (HRR) and peak heat release rate (PHRR). The PHRR of PP/IFR/Si0.5 was only 295.8 kW/m(2), which was 17% lower than that of PP/IFR. Moreover, the time to PHRR of PP/IFR/Si0.5 was delayed to 396 s, which was about 36 s later than that without nano-silica. EDS was used to quantitatively analyze the distribution of silica in charred residue. The EDS results indicated that the silica tended to accumulate on the surface during the fire. The surface accumulation characteristic of silica endows it with the enhanced flame-retardant properties of polypropylene composite at a very small dosage (as low as 1 wt.%).
    • Relation:
      http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10343592/; http://dx.doi.org/10.3390/ma16134759
    • الرقم المعرف:
      10.3390/ma16134759
    • Rights:
      © 2023 by the authors. ; https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
    • الرقم المعرف:
      edsbas.DEBBA34F