Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Vaccination against Epstein–Barr Latent Membrane Protein 1 Protects against an Epstein–Barr Virus-Associated B Cell Model of Lymphoma

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      MDPI AG
    • الموضوع:
      2023
    • Collection:
      Directory of Open Access Journals: DOAJ Articles
    • نبذة مختصرة :
      In this study, we demonstrate that expression of viral latent membrane protein 1 (LMP1) in a mouse B cell line renders the animals responsive to protection from a 38C13-LMP1 tumor challenge with a novel vaccine. The Epstein–Barr virus (EBV) preferentially infects circulating B lymphocytes, has oncogenic potential, and is associated with a wide variety of B cell lymphomas. EBV is ectotrophic to human cells, and currently there are no B cell animal models of EBV-associated lymphoma that can be used to investigate vaccine immunotherapy. Since most EBV-infected human tumor cells express latent membrane protein 1 (LMP1) on their surface, this viral antigen was tested as a potential target for an anticancer vaccine in a mouse model. Here, we describe a new mouse model of LMP1-expressing B cell lymphoma produced with plasmid transduction of 38C13 into mouse B cells. The expression of LMP-1 was confirmed with a western blot analysis and immunocytochemistry. We then designed a novel LMP1 vaccine, by fusing viral antigen LMP1 surface loop epitopes to the surface of a viral antigen carrier, the Tobacco Mosaic virus (TMV). Vaccinated mice produced high titer antibodies against the TMV-LMP1 vaccine; however, cellular responses were at the baseline, as measured with IFNγ ELISpot. Despite this, the vaccine showed significant protection from a 38C13-LMP1 tumor challenge. To provide additional immune targets, we compared TMV-LMP1 peptide immunization with DNA immunization with the full-length LMP1 gene. Anti-LMP1 antibodies were significantly higher in TMV-LMP1-vaccinated mice compared to the DNA-immunized mice, but, as predicted, DNA-vaccinated mice had improved cellular responses using IFNγ ELISpot. Surprisingly, the TMV-LMP1 vaccine provided protection from a 38C13-LMP1 tumor challenge, while the DNA vaccine did not. Thus, we demonstrated that LMP1 expression in a mouse B cell line is responsive to antibody immunotherapy that may be applied to EBV-associated disease.
    • ISSN:
      2079-7737
    • Relation:
      https://www.mdpi.com/2079-7737/12/7/983; https://doaj.org/toc/2079-7737; https://doaj.org/article/32b74c31ffa0475a9792f007001f65cd
    • الرقم المعرف:
      10.3390/biology12070983
    • الرقم المعرف:
      edsbas.CABAFD4A